
FoCaLiZe

Reference Manual

0.9.2

June 2018

Authors

Thérèse Hardin, François Pessaux, Pierre Weis, Damien Doligez

1

About FoCaLiZe

FoCaLiZe is the result of a collective work of several researchers, listed in the following, who

designed, defined, compiled, studied, extended, used and debugged the preceding versions. They

were helped by many students who had a summer internship under their supervision. They would

like to thank all these students and more generally all the persons who brought some contribution

to FoCaLiZe.

FoCaLiZe contributors

Philippe Ayrault (SPI-LIP6), William Bartlett (CPR-CEDRIC), Julien Blond (SPI-LIP6), Syl-
vain Boulmé (SPI-LIP6), Matthieu Carlier (CPR-CEDRIC), David Delahaye (CPR-CEDRIC),
Damien Doligez (GALLIUM-INRIA), Catherine Dubois (CPR-CEDRIC), Jean-Frédéric Etienne
(CPR-CEDRIC), Stéphane Fechter (SPI-LIP6), Lionel Habib (SPI-LIP6), Thérèse Hardin (SPI-
LIP6), Eric Jaeger (SPI-LIP6), Mathieu Jaume (SPI-LIP6), Charles Morisset (SPI-LIP6), Ivan
Noyer (SPI-LIP6), François Pessaux (SPI-LIP6)(UIIS-ENSTA ParisTech), Virgile Prevosto (SPI-
LIP6), Renaud Rioboo (CPR-CEDRC), Lien Tran (SPI-LIP6), Véronique Viguié Donzeau-Gouge
(CPR-CNAM), Pierre Weis (ESTIME-INRIA)

and their institutions

SPI (Semantics, Proofs and Implementations) is a team of LIP6, (Laboratoire d’Informatique de Paris

6) of UPMC (Pierre and Marie Curie University)1.

CPR (Conception et Programmation Raisonnées) is a team of CEDRIC (Centre d’Etudes et de Recherches

du CNAM) of CNAM (Conservatoire National des Arts et Métiers)2 and ENSIIE (Ecole Nationale d’Informatique

pour l’Industrie et l’Entreprise)3.

1UPMC-LIP6, 104 avenue du Président Kennedy, Paris 75016, France, Firstname.Lastname@lip6.fr
2CNAM-CEDRIC, 292 rue Saint Martin, 75003, Paris, France, Firstname.Lastname@cnam.fr
3ENSIIE-CEDRIC, 1 Square de la Résistance, 91025 Evry Cedex, France, Lastname@ensiie.fr

2

ESTIME and GALLIUM are teams of INRIA Rocquencourt4.

U2S (Unité d’Informatique et d’Ingénierie des Systèmes) is a team of ENSTA ParisTech5.

Thanks

The Foc project was first partially supported by LIP6 (Projet Foc, LIP6 1997) then by the Ministry of

Research (Action Modulogic). The Focal research team was then partially supported by the French SSURF

ANR project ANR-06-SETI-016 (Safety and Security UndeR Focal). The project also benefited of strong

collaborations with the EDEMOI ANR project and with the BERTIN and SAFERIVER companies.

The FoCaLiZe language and compiler development effort started around 2005. The architecture con-

ception and code rewritting started from scratch in 2006 to finally make the first focalizec compiler and

FoCaLiZe system distribution in 2009, January.

This manual documents the completely revised system with the new syntax and its semantics extensions.

4INRIA, Bat 8. Domaine de Voluceau, Rocquencourt, BP 105, F-78153 Le Chesnay, France,

Firstname.Lastname@inria.fr
5ENSTA, 828 boulevard des Maréchaux, F-91120 Palaiseau, France, Firstname.Lastname@ensta-paristech.fr

3

Contents

1 Overview 11

1.1 The Basic Brick . 11

1.2 Type of Species, Interfaces and Collections . 13

1.3 Combining Bricks by Inheritance . 14

1.4 Combining Bricks by Parameterisation . 15

1.4.1 Parameterisation by Collection . 15

1.4.2 Parameterisation by Entity (Value) . 16

1.5 The Final Brick . 17

1.6 Properties, Theorems and Proofs . 17

1.7 Around the Language . 19

1.7.1 Consistency of the Software . 19

1.7.2 Code Generation . 19

1.7.3 Tests . 20

1.7.4 Documentation . 20

2 Installing and Compiling 21

2.1 Required software . 21

2.2 Optional software . 21

2.3 Operating systems . 21

2.4 Installation . 22

2.5 Compilation process and outputs . 23

2.5.1 Outputs . 23

2.5.2 Compiling a source . 23

3 The core language 26

3.1 Lexical conventions . 26

3.1.1 Blanks . 26

3.1.2 Escaped characters . 26

3.1.3 Comments . 26

3.1.3.1 General comments . 26

3.1.3.2 Uni-line comments . 27

3.1.4 Annotations . 27

3.1.5 Identifiers . 27

3.1.5.1 Introduction . 28

3.1.5.2 Conceptual properties of names . 28

4

3.1.5.3 Fixity of identifiers . 28

3.1.5.4 Precedence of identifiers . 29

3.1.5.5 Categorisation of identifiers . 29

3.1.5.6 Nature of identifiers . 29

3.1.5.7 Alphanumeric identifiers . 29

3.1.5.8 Infix/prefix operators . 30

3.1.5.9 Defining an infix operator . 31

3.1.5.10 Prefix form notation . 31

3.1.6 Extended identifiers . 32

3.1.7 Species and collection names . 32

3.1.8 Integer literals . 33

3.1.9 String literals . 33

3.1.10 Character literals . 34

3.1.11 Floating-point number literals . 35

3.1.12 Proof step bullets . 35

3.1.13 Name qualification . 35

3.1.14 Reserved keywords . 36

3.2 Language constructs and syntax . 37

3.2.1 Types . 37

3.2.1.1 Type constructors . 37

3.2.1.2 Type expressions . 38

3.2.1.3 Type definitions . 38

3.2.2 Mutually Recursive Types Definitions . 42

3.2.3 Type-checking . 42

3.2.4 Representations . 43

3.2.5 Expressions . 43

3.2.5.1 Literal expressions . 45

3.2.5.2 Sum type value constructor expressions 45

3.2.5.3 Identifier expressions . 45

3.2.5.4 let-in expression . 47

3.2.5.5 logical let . 49

3.2.5.6 final (logical) let . 50

3.2.5.7 Conditional expression . 50

3.2.5.8 Match expression . 50

3.2.5.9 Application expression . 52

3.2.5.10 Operator application expression . 53

3.2.5.11 Record expression . 53

3.2.5.12 Cloning a record expression . 53

3.2.5.13 Record field access expression . 54

3.2.5.14 Parenthesised expression . 54

3.2.6 Core language expressions and definitions . 54

3.2.7 Files and uses directives . 55

3.2.7.1 The use directive . 55

3.2.7.2 The open directive . 55

3.2.7.3 The coq require directive . 56

5

3.2.8 Properties, theorems and proofs . 56

3.2.8.1 Logical expressions . 56

3.2.8.2 Properties . 57

3.2.8.3 Proofs . 57

3.2.8.4 Theorems . 59

4 The FoCaLiZe model 60

4.1 Basic concepts . 60

4.1.1 Top-level Definitions . 60

4.1.2 Species . 61

4.1.3 Complete species . 62

4.1.4 Interfaces . 63

4.1.5 Collections . 63

4.2 Parametrisation . 64

4.2.1 Collection parameters . 64

4.2.2 Entity parameters . 66

4.3 Inheritance and its mechanisms . 67

4.3.1 Inheritance . 67

4.3.2 Species expressions . 69

4.4 Late-binding and dependencies . 69

4.4.1 Late-binding . 69

4.4.2 Dependencies and erasing . 70

4.4.2.1 Decl-dependencies . 70

4.4.2.2 Def-dependencies . 71

4.4.2.3 Erasing during inheritance . 71

4.4.2.4 Dependencies on collection parameters 71

4.4.3 More about methods definition . 71

4.4.3.1 Well-formation . 72

4.4.3.2 Def-dependencies on the representation 72

5 The FoCaLiZe Proof Language 74

5.1 Proofs of theorems . 74

5.1.1 Other simple proofs examples . 76

5.1.2 Scoping rules . 77

5.1.3 Zenon options . 77

6 Recursive function definitions 78

6.1 Limitations . 78

6.2 Kinds of termination proofs . 78

6.2.1 Structural termination . 79

6.2.1.1 Example . 79

6.2.1.2 Example . 79

6.2.1.3 Wrong Example . 79

6.2.1.4 Example . 79

6.2.2 Termination by a well-founded relation . 80

6

6.2.3 Termination by a measure . 81

6.2.3.1 Using Other Function Parameters or Arbitrary Expression 83

6.2.3.2 Recursive Functions in Dedukti . 84

7 Compiler options 85

8 Documentation generation 88

8.0.1 Special tags . 88

8.0.1.1 @title . 88

8.0.1.2 @author . 88

8.0.1.3 @description . 88

8.0.1.4 @mathml . 89

8.0.2 Transforming the generated documentation file . 90

8.0.2.1 XML to HTML . 90

8.0.3 XML to LaTeX . 91

9 Hacking deeper 92

9.0.1 Interfacing FoCaLiZe with other languages . 92

9.0.2 Dealing with hand-written Coq and Dedukti proofs 92

10 Compiler error messages 93

7

Introduction

Motivations

The Foc project was launched in 1998 by T. Hardin and R. Rioboo [16] 6 with the objective of helping

all stages of development of critical software within safety and security domains. The methods used in

these domains are evolving, ad-hoc and empirical approaches being replaced by more formal methods. For

example, for high levels of safety, formal models of the requirement/specification phase are more and more

considered as they allow mechanized proofs, test or static analysis of the required properties. In the same

way, high level assurance in system security asks for the use of true formal methods along the process of

software development and is often required for the specification level. Thus the project was to elaborate an

Integrated Development Environment (IDE) able to provide high-level and justified confidence to users, but

remaining easy to use by well-trained engineers.

To ease developing high integrity systems with numerous software components, an IDE should provide

tools to formally express specifications, to describe design and coding and to ensure that specification re-

quirements are met by the corresponding code. But this is not enough. First, standards of critical systems

ask for pertinent documentation which has to be maintained along all the revisions during the system life

cycle. Second, the evaluation conformance process of software is by nature a skeptical analysis. Thus, any

proof of code correctness must be easily redone at request and traceability must be eased. Third, design and

coding are difficult tasks. Research in software engineering has demonstrated the help provided by some

object-oriented features as inheritance, late binding and early research works on programming languages

have pointed out the importance of abstraction mechanisms such as modularity to help invariant preserva-

tion. There are a lot of other points which should also be considered when designing an IDE for safe and/or

secure systems to ensure conformance with high Evaluation Assurance or Safety Integrity Levels (EAL-5 to

7 or SIL 3 and 4) and to ease the evaluation process according to various standards (e.g. IEC61508, CC, ...):

handling of non-functional contents of specification, handling of dysfunctional behaviors and vulnerabilities

from the true beginning of development as well as fault avoidance and fault detection by validation testing,

vulnerability and safety analysis.

Initial application testbed

When the Foc project was launched by T. Hardin and R. Rioboo, only the specific domain of Computer

Algebra was initially considered. Algorithms used in this domain can be rather intricated and difficult to

test and this is not rare that computer algebra systems issue a bad result, due to semantical flaws, compiler

anomalies, etc. Thus the idea was to design a language allowing to specify the mathematics underlying

these algorithms and to go step by step to different kinds of implementations according to the specifities of

the problem under consideration7. The first step was to design the semantics of such a language, trying to

fit to several requirements: easing the expression of mathematical statements, clear distinction between the

mathematical structure (semi-ring, polynomial, ..) and its different implementations, easing the development

(modularity, inheritance, parametrisation, abstraction, ..), runtime efficiency and confidence in the whole

development (mechanised proofs, ..). After an initial phase of conceptual design, the Foc semantics was

submitted to a double test. On one hand, this semantics was specified in Coq and in a categorical model

of type theories by S. Boulmé (see his thesis [3]), a point which enlightened the borders of this approach,

6They were members of the SPI (Semantics, Proofs, Implementations) team of the LIP6 (Lab. Informatique de Paris 6) at

Université Pierre et Marie Curie (UMPC), Paris
7For example Computer Algebra Libraries use different representations of polynomials according to the treatment to be done

8

regarding the logical background. On the other hand, as a preliminary step before designing the syntax, a

strudy of the typical development style was conducted. R. Rioboo [5, 16] used the OCaml language to try

different solutions, recorded in [16].

Initial Focal design

Then the time came to design the syntax of the language and the compiler. To overcome inconsistencies

risks, an original dependency analysis was incorporated into the compiler (V. Prevosto thesis [23, 26, 25])

and the correction of the compiler (mostly written by V. Prevosto) against Focal’s semantics is proved (by

hand) [24], a point which brings a satisfactory confidence in the language’s correctness. Then R. Rioboo[4]

began the development of a huge Computer Algebra library, offering full specification and implementation

of usual algebraic structures up to multivariate polynomial rings with complex algorithms, to extensively test

the language and the efficiency of the produced code, aswell as to provide a standard library of mathematical

backgrounds. D. Doligez [2] started the development of Zenon, an automatic prover based on tableaux

method, which takes a Focal statement and tries to build a proof of it and, when succeeds, issues a Coq

term. More recently, M. Carlier and C. Dubois[21] began the development of a test tool for Focal.

Focal has already been used to develop huge examples such as the standard library and the computer

algebra library. The library dedicated to the algebra of access control models, developed by M. Jaume and

C. Morisset [18, 19, 22], is another huge example, which borrows implementations of orderings, lattices

and boolean algebras from the computer algebra library. Focal was also very successfully used to formalize

airport security regulations, a work by D. Delahaye, J.-F. Etienne, C. Dubois, V. Donzeau-Gouge [11, 12,

13]. This last work led to the development of a translator [10] from Focal to UML for documentation

purposes.

The FoCaLiZe system

The FoCaLiZe development started in 2006, as a continuation of the Foc and Focal efforts. The new

system was rewritten from scratch. A new language and syntax was designed and carefully implemented,

with in mind ease of use, expressivity, and programmer friendlyness. The addition of powerful data structure

definitions – together with the corresponding pattern matching facilities – leads to new expressive power.

The Zenon automatic theorem prover was also integrated in the compiler and natively interfaced within

the FoCaLiZe language. New developments for a better support of recursive functions is on the way (in

particular for termination proofs).

The FoCaLiZe system in short

The FoCaLiZe system provides means for the developers to formally express their specifications and to

go step by step (in an incremental approach) to design and implementation while proving that such an

implementation meets its specification or design requirements. The FoCaLiZe language offers high level

mechanisms such as multiple inheritance, late binding, redefinition, parametrization, etc. Confidence in

proofs submitted by developers or automatically done relies on formal proof verification. FoCaLiZe also

provides some automation of documentation production and management.

A formal specification can be built by declaring names of functions and values and introducing prop-

erties. Then, design and implementation can incrementally be done by adding definitions of functions and

proving that the implementation meets the specification or design requirements. Thus, developing in Fo-

CaLiZe is a kind of refinement process from formal model to design and code, completely done within

9

FoCaLiZe. Taking the global development in consideration within the same environment brings some con-

ciseness, helps documentation and reviewing.

A FoCaLiZe development is organised as a hierarchy that may have several roots. The upper levels of

the hierarchy are built along the specification stage while the lower ones correspond to implementation and

each node of the hierarchy corresponds to a progress toward a complete implementation.

We would like to mention several works about safety and/or security concerns within FoCaLiZe and

specially the definition of a safety life cycle by P. Ayrault, T. Hardin and F. Pessaux [1] and the study of

some traps within formal methods by E. Jaeger and T. Hardin[17].

FoCaLiZe can be seen as an IDE still in development, which gives a positive solution to the three

requirements identified above:

1. pertinent documentation is maintained within the system being written, and its extraction is an auto-

matic part of the compilation process,

2. proofs are produced using an automated proved which can be guided using a high level proof language,

so that proofs are easier to write and their verification is automatic and reliable,

3. the framework provides powerful abstraction mechanisms to facilitate design and development; how-

ever, these mechanisms are carefully ruled: the compiler performs numerous validity checks to ensure

that no further development can inadvertantly break the invariants or invalidate the proofs; indeed, the

compiler ensures that if a theorem was based on assumptions that are now violated by the new de-

velopment, then the theorem is out of reach of the programmer and the properties have to be proven

again.

10

Chapter 1

Overview

Before entering the precise description of FoCaLiZe, we give an informal presentation of its main features,

to help further reading of the reference manual. Every construction or feature that we sketch here is entirely

and precisely described in the following chapters.

1.1 The Basic Brick

The primitive entity of a FoCaLiZe development is the species. It can be viewed as a record grouping

“things” related to the same concept. Like in most modular design systems (i.e. objected oriented, alge-

braic abstract types), the idea is to group a data structure with the operations that operate on it. Since in

FoCaLiZe we don’t only address data type and operations, these “things” also comprise the declaration (or

specification) of the operations, their stated properties (which represent the requirements for the operations),

and the proofs of these properties.

We now informely describe each of these “things”, called the methods of the species.

• The representation gives the data representation of the entities manipulated by the species. It

is a type defined by a type expression. The representation definition may be deferred, which means

that the structure of the embedded data-type does not need to be known at this point. In this case, it

is simply a type variable. However, to finally obtain an implementation, the representation has to be

defined at some point, either by setting representation = type exp where type exp is a

type expression or by inheritance (see below). Type expressions in FoCaLiZe are roughly speaking

the ML type expressions (variables, basic types, inductive types, record types).

Each species has a unique representation. This is not a restriction compared to other languages where

programs/objects/modules can own several private variables representing the internal state, since the

variables define some part of the data structure of the entities manipulated by the program/object/-

module. The equivalent FoCaLiZe representation is simply a tuple grouping in one place all these

variables that were disseminated in the entire program/object/module.

• Declarations are composed of the keyword signature followed by a name and a type. They an-

nounce a method to be defined later (the type of the method is given but the implementation is still

omitted). Once a method is declared, this method can be used in the text following the declaration,

in particular in the definition of other methods: indeed, the type provided by the signature allows the

FoCaLiZe compiler to check that the method is consistently used in all contexts with a type compat-

11

ible with the declared type. Furthermore, the late-binding and the collection mechanisms introduced

below, ensure that the definition of the method is known when the method is effectively invoked.

• Definitions are composed of the keyword let, followed by a name, an optional type, and an expres-

sion. They serve to introduce constants or functions, i.e. computational operations. The core language

used to implement them is roughly ML-like expressions (let-binding, pattern matching, conditional,

higher order functions, . . .) with the addition of a construction to call a method from a given species.

Mutually recursive definitions are introduced by let rec.

• Property statements are composed of the keyword property followed by the name of the property

and its definition, a first-order formula. A property may serve to express requirements (i.e. a fact

that the system must hold to conform to the Statement of Work) and in this case we can view the

property as a specification purpose method, like a signature was for let-methods. A property induces

a proof obligation to be discharged at some point in the development. A property may also be used

to express some “quality” information of the system (soundness, correctness, . . .) also submitted to a

proof obligation. The formulae are written with the usual logical connectors, universal and existential

quantifications over a FoCaLiZe type, and cite the name of any method known within the species’

context. For instance, a property telling that for any vehicle, if the speed is non-null, then the doors

cannot be opened could look like:

all m in Self, !speed(m) <> Speed!zero -> ˜doors open(m)

In the same way as signatures, a yet to be proved property can be used as an hypothesis in the proof

of other properties or theorems. Once more, the FoCaLiZe late binding and collection mechanisms

ensure that the proof of a property will be ultimately done.

• Theorems (theorem) made of a name, a statement and a proof are properties packed with the formal

proof that their statement holds in the context of the species. The proof accompanying the state-

ment will be processed by FoCaLiZe, a first-order theorem prover (either Zenon or Zenon Modulo)

and ultimately checked with a proof checker (either the Coq proof assistant or the Dedukti logical

framework).

Regarding properties and theorems, note that like in any formal development, the difficulty may be more

to express a true, interesting and meaningful statement, than to prove it. For instance, claiming that a piece

of software is “formally proved” because it respects a safety requirement is meaningless if the statement of

this requirement is trivially true (see [17] for examples).

Let’s illustrate these notions on an example that we incrementally extend. We want to model some

simple algebraic structures. Let’s start with the description of a “setoid” representing the data structure of

“things” belonging to a set, which can be submitted to an equality test and exhibited (i.e. one can get a

witness of existence of one of these “things”).

species Setoid =

signature (=) : Self -> Self -> bool ;

signature element : Self ;

property refl : all x in Self, x = x ;

property symm : all x y in Self, x = y -> y = x ;

property trans: all x y z in Self, x=y and y=z -> x=z ;

let different (x, y) = basics#not_b (x = y) ;

theorem different_irrefl : all x in Self, ˜different(x, x)

proof = by definition of different

property refl ;

end ;;

12

In this species, the representation is not explicitly given (the keyword representation is not used),

since we don’t need to set it to the express functions and properties that a “setoid” requires. However, we

can refer to the representation via Self (in this case a type variable). In the same way, we just specify a

signature for the equality (operator =). We introduce the three properties that the equality must have (exactly

the properties of an equivalence relation).

We complete the example by the definition of the function different which uses the (not yet defined)

= method, and the predefined boolean negation basics#not b.

Not only we can define different out of a not yet defined method =, we can also prove a prop-

erty of different based on the not yet proved properties of =! Indeed we prove that different is

irreflexive, under the hypothesis that = is an equivalence relation (i.e. that any implementation of = used by

different will satisfy these properties).

Note: basics#not b stands for the function not b defined in the FoCaLiZe basics development

(which is in the source file basics.fcl of the standard library).

In FoCaLiZe, the late-binding feature makes it possible to use methods as soon as they have been

declared and way before they get a real definition. Similarly, FoCaLiZe allows arbitrary method redefinition:

the effective definition of the method inside a species is guarrantied to be the last version of the successive

definitions of the method.

1.2 Type of Species, Interfaces and Collections

The type of a species is obtained by removing all the definitions and proofs. Thus, it is somoe kind of

record type, made of all the method types of the species. If the representation is still a type variable

say α, then the species type is prefixed with an existential binder ∃α. This binder is eliminated as soon

as the representation is known. Technically, the existancial type variable is instantiated when the

representation type is defined; furthermore, the compiler checks that all existancial type variables have been

eliminated before the generation of runnable code.

The interface of a species is obtained by abstracting the representation type in the species type; this

abstraction is permanent.

Warning No special construction is given to denote the interface of a species in the concrete syntax, it

is simply denoted by the name of the species. Do not confuse a species and its interface.

The species type remain totally implicit in the concrete syntax, being just used as a step to build the

species interface. It is used during inheritance resolution.

Interfaces can be ordered by inclusion, a point providing a very simple notion of subtyping. This point

will be further commented.

A species is said to be complete when the representation and all the declarations have received a defini-

tion and all the properties have received a proof.

When complete, a species can be submitted to an abstraction process of its representation to create a

collection. Put it the other way round: a collection abstracts a complete species. Thus, the interface of a

collection is the interface of the abstracted complete species. Thus, a collection is a kind of abstract data

type, only usable through the methods of its interface, with the addional guarantee that all the declarations

have been defined and all the statements have been proved.

13

1.3 Combining Bricks by Inheritance

A FoCaLiZe development is organised as a hierarchy which may have several roots. Usually the upper levels

of the hierarchy are built during the specification stage while the lower ones correspond to implementations.

Each node of the hierarchy, i.e. each species, is a progress towards a complete implementation. On the

previous example, putting aside different, we typically presented a kind of species for “specification”

since it expresses only signatures of functions to be later implemented and properties to be later proved.

We can now create a new species by inheritance of an already defined one. We can make this new

species more “complex” by adding new operations and properties, or we can make it more concrete by

providing definitions to signatures and proofs to properties, without adding new features.

Hence, the FoCaLiZe inheritance notion serves two kinds of evolutions in the development process. The

first kind of evolution is additional complexity: the inheritance makes more complex species out of simpler

ones; the new species gets more operations than its parents (keeping the ancestors operations or possibly

redefining some of them, if required). The second kind of inheritance is refinement: the new species has

less and less still unknown parts; it tends to the status of a “runnable” implementation, providing explicit

definitions to the methods that were previously only declared.

Continuing our example, we want to extend our model to represent “things” with a multiplication and a

neutral element for this operation.

species Monoid =

inherit Setoid;

signature (*) : Self -> Self -> Self ;

signature one : Self ;

let element = one * one ;

end ;;

Monoid are “things” that are Setoids but also have an operation * and a specific value called one; besides

the new methods we also gave a definition to element, saying it is the application of the method * to one

twice, both of them being only declared. Here, we used the inheritance in both the presented ways: making

a more complex entity by adding methods and getting closer to the implementation by explicitly defining

element.

FoCaLiZe provides multiple inheritance. For sake of simplicity, the above example uses simple inher-

itance. When inheriting the same method from more than one parent, the order of parents apparition in the

inherit clause serves to determine the chosen method (only the latest definition of any method appearing

several times in the list of inherited species is retained).

The type of a species built using inheritance is defined like for other species, the method types being

those of the methods appearing in the species after inheritance resolution.

A strong constraint in inheritance is that the type of inherited, and/or redefined methods cannot change.

This is required to ensure consistency of the FoCaLiZe model, hence of the developed software. More

precisely, if the representation is given by a type expression containing some type variables, then it can be

more defined by instanciation of these variables. In the same way, two signatures have compatible types if

they have a common unifier; thus, roughly speaking, if they are compatible as ML-like types. For example,

if the representation was not yet defined (thus being still a type variable), it can be defined by int. And

if a species S inherits from S1 and S2 a method called m, there is no type clash if S1!m and S2!m can be

unified, then the method S!m is addigned the most general unifier of these two types.

In a nutshell, if a species B inherits from a species A, the intuition is that any instance of B is also an

instance of A.

14

1.4 Combining Bricks by Parameterisation

As indicated, inheritance is used to enrich or to implement species. However, we sometimes need to use

a species, not to take over its methods, but rather to use it as an “ingredient” to build a new structure. For

instance, a product of setoids is a new structure, using the previous species as the “ingredient”. Indeed, the

structure of a product is not similar to any of its component, but is build using the structures of its com-

ponents. A product can be seen as parameterised by its two components. Following this idea, FoCaLiZe

allows two flavors of parameterisation.

1.4.1 Parameterisation by Collection

We first introduce the collection parameters. They are collections that the hosting species may use through

their methods to define its own ones.

A collection parameter is given a name C and a (species) interface I . The name C serves to call the

methods declared in I . Intuitively, C will at some stage be implemented by a collection CE whose interface

contains the methods of the interface I . Moreover, the collection and late-binding mechanisms ensure that

all methods appearing in I are indeed implemented (defined for functions, proved for properties) in CE.

Thus, no runtime error, due to linkage of libraries, can occur and any property or theorem stated in I can be

safely used as an hypothesis.

Calling a species’s method is done via the “bang” notation: !meth or

Self!meth for a method of the current species (and in this case, even simpler: meth, since the Fo-

CaLiZe compiler will resolve scoping issues). To call collection parameters’s method, the same notation is

used: A!element stands for the method element of the collection parameter A.

To go on with our example, a product of setoids has two components, hence a species for products of

setoids has two collection parameters. It is itself a setoid (that is, a “thing” with an equality), a fact which is

simply recorded via the inheritance mechanism: inherit Setoid gives to Setoid product all the

methods of Setoid.

species Setoid_product (A is Setoid, B is Setoid) =

inherit Setoid;

signature fst : Self -> A ;

signature snd : Self -> B ;

signature pair : A -> B -> Self ;

let element = Self!pair(A!element, B!element) ;

let (=) (x, y) = basics#and_b (A!(=)(fst(x), fst(y)),

B!(=)(snd(x), snd(y))) ;

proof of refl = by definition of (=)

property A!refl, B!refl ;

end ;;

We first declare methods fst, snd and pair to represent the two projections and the construction of

pairs. Next, we introduce a definition for element by building a pair, using the function pair applied

to the method element of respectively A and B. We also add a definition for = of Setoid product,

relying on the methods = of A and B (which are not yet defined), and we prove that = of Setoid product

is indeed reflexive, upon the hypothesis made on A!(=) and B!(=). The part of FoCaLiZe used to

write proofs will be shortly presented later, in section 1.6.

15

Such a species can be refined with representation = A * B, indicating that the representation

of the product is the Cartesian Product of the representation of the two parameters. In A * B, * is the

FoCaLiZe type constructor of pairs, A denotes indeed the representation of the first collection parameter,

and B the one of of the second collection parameter.

This way, the species Setoid product builds its methods relying on those of its collection parame-

ters. Note the two different uses of Setoid in our species Setoid product, which both inherits of and

is parameterised by it.

Why collection parameters and not simply species parameters? There are two reasons. First, effective

parameters must provide definitions/proofs for all the methods of the required interface: this is the contract.

Thus, effective parameters must be complete species. Then, we do not want the parameterisation to intro-

duce dependencies on the parameters’ representation definitions. For example, it is impossible to express

“ if A!representation is int and B!representation is bool then A * B is a list of boolean

values”. This would dramatically restrict the possibilities to instantiate parameters since assumptions on the

representation, possibly used in the parameterised species to write its own methods, could prevent collec-

tions having the right set of methods but a different representation to be used as effective parameters. Such

a behaviour would make parameterisation too weak to be usable. We choose to always hide the representa-

tion of a collection parameter to the parameterised hosting species. Hence the introduction of the notion of

collection, obtained by abstracting the representation from a complete species.

1.4.2 Parameterisation by Entity (Value)

Let us imagine we want to make a species to implement arithmetic on natural numbers modulo a certain

value. In the expression 5 modulo 2 is 1, both 5 and 2 are natural numbers. To be sure that the species

will consistently work with the same modulo, this last one must be embedded in the species. However, the

species itself doesn’t rely on a particular value of the modulo. Hence this value is clearly a parameter of

the species, but a parameter for which need its value, not only by its representation and the methods acting

on it. Such a parameter is named an entity parameter. Being a value, an entity parameter belongs to some

collection, and this collection must also be declared as a collection parameter of the species. An entity

parameter denotes a value having the type of the representation of its associated collection parameter.

As an exemple, let us define a collection Modulo n. We first define a species to represent natural

numbers:

species NatModel =

signature one : Self ;

signature inc : Self -> Self ;

signature modulo : Self -> Self -> Self ;

end ;;

Note that NatModel can be later implemented in various ways, using Peano’s integers, machine inte-

gers, arbitrary-precision arithmetic (as well as things that are not really integers, our specification being too

simplistic). . .

The species “working modulo n. . . ” now embeds the value of n as an element of a collection for

NatModel:

species Modulo_n (Naturals is NatModel, n in Naturals) =

let job1 (x : Naturals) =

... Naturals!modulo (x, n) ... ;

let job2 (x : Naturals, ...) =

... ... Naturals!modulo (x, n) ;

16

end ;;

Using the entity parameter n, we ensure that the species Modulo n works for any value of the modulo,

but will always use the same value n of the modulo everywhere inside the species.

1.5 The Final Brick

As briefly introduced in 1.2, a species needs to be complete to lead to executable code for its functions and

checkable proofs for its theorems. When a species is complete, it can be turned into a collection. Hence,

a collection represents the final stage of the inheritance tree of a species and leads to an effective data

representation with executable functions processing it.

For instance, providing that the previous species NatModel has been refined into a fully-defined species

MachineNativeInt through inheritances steps, with a method from string allowing to create the

natural representation of a string, we could get a related collection by:

collection MachineNativeIntegers =

implement MachineNativeInt;

end ;;

Next, to get a collection implementing arithmetic modulo 8, we can define a collection for the species

Modulo n:

collection Modulo_8 =

implement Modulo_n

(MachineNativeIntegers, MachineNativeIntegers!from_string ("8");

end;;

As exemplify here, a species is applied to effective parameters by giving their values with the same

syntax as for parameter passing.

As said before, to ensure modularity and abstraction, the representation of a collection is hidden (as well

as its definitions). It means that any software component using a collection will only be able to manipulate

its values through the operations (methods) that the collection provides via its interface. As a corollary, no

other software component can possibly break the invariants required by the internals of a collection.

1.6 Properties, Theorems and Proofs

FoCaLiZe not only provides a way to write programs, it also intends to encompass both the executable

model (i.e. program) and the properties that this model must satisfy. For this reason, some “special” fields

of the species only deal with logic instead of specifying purely behavioural aspects of the program: those

logical aspects are theorems, properties and proofs.

Stating a property declares that a proof that the property holds will be given at some stage of the de-

velopment. The theorems are properties for which the proof is given with the statement. All the proofs

must be done by the developer; the compiler ultimately send them to the proof checker for verification:

all the demonstrations made in FoCaLiZe are automatically machine checked for consistency (by Coq or

Dedukti).

FoCaLiZe provides several ways to write proofs. The normal and encouraged way is to use the Fo-

CaLiZe’s proof language to write the proofs. The FoCaLiZe’s proof language (or FPL for short), is a

hierarchical proof language especially designed to give an easy way to vary the grain of the proof, from

17

rough sketch to fully detailed proof. As in the usual mathematical activity, the idea is to provide hints and

direction for a proof and let the reader complete the details. Well, don’t panic: you will not have to complete

the proofs of all the FoCaLiZe development you may ever read or write! The proofs in FoCaLiZe do not

require a human being to read them and complete their numerous omitted details! The FoCaLiZe system

delegates this burden to a companion program: the Zenon proof finder.

From the hints given in the FoCaLiZe development, Zenon attempts to generate a complete proof and

exhibit a Coq or Dedukti proof term suitable for verification. So far so good! But what happens if Zenon

fails to find the (complete) proof ? Well, you can consider this failure as a hint that the given proof was too

sketchy: you have to develop it a bit, for instance by stating and proving some intermediate lemmas or by

detailing the proof path! Once again, this is rather natural and not so far from normal mathematical activity.

Zenon [2, 14] is developed by D. Doligez. It is a first order theorem prover based on the tableau method

incorporating implementation novelties such as sharing.

The FoCaLiZe programmer gives basic hints to Zenon such as: “prove by definition of this method”

(i.e. look inside the body of the method) or “prove by this property” (i.e. use the logical statement of a

theorem or property already proven). This hint mechanism is embedded into the entire FPL description of

the proof into steps stating assumptions (that must obviously be demonstrated afterwards) in order to prove

some lemmas or parts of the property at hand.

We now give such a demonstration.

theorem order_inf_is_infimum : all x y i : Self,

!order_inf(i, x) -> !order_inf(i, y) ->

!order_inf(i, !inf(x, y))

proof =

<1>1 assume

x : Self, y : Self, i : Self,

hypothesis H1 : !order_inf (i, x),

hypothesis H2 : !order_inf (i, y),

prove !order_inf (i, !inf (x, y))

<2>1 prove !equal (i, !inf (!inf (i, x), y))

by hypothesis H1, H2

property inf_left_substitution_rule,

equal_symmetric, equal_transitive

definition of order_inf

<2>f qed

by step <2>1

property inf_is_associative, equal_transitive

definition of order_inf

<1>f conclude

;

The important point is that Zenon works for the developer: it searches and completes the proof for

the developer that no more have to elaborate the proof completely formally “from scratch”.

Like all other automatic theorem prover, Zenon may fail to find a demonstration. In this case, FoCaLiZe

allows the developer to write verbatim Coq or Dedukti proofs. Comfort of automation is lost in favor of

an increase in expressive power: the entire Dedukti and Coq vernacular languages are now available to the

developer to write the proof.

Finally, the assumed keyword is the ultimate proof backdoor: the proof is not given and the property

is admitted. Obviously, a safe development should not make a liberal usage of this feature, since assumed

bypasses the formal verification of the software’s model. However, such a functionality remains needed

for various reasons. For example, a development may be linked with external code; the properties of the

FoCaLiZe code now depends on properties of the external code; to continue the development as safely as

possible, it is necessary to carefully state the properties that are assumed for the external code and go on

18

providing properties and proofs about the program: those proofs will give valuable confidence, even if they

only hold if the set of assumptions for the external code is valid.

1.7 Around the Language

In the previous sections, we presented FoCaLiZe through its programming model and shortly its syntax. We

especially investigated the various entities making a FoCaLiZe program. We now address what becomes a

FoCaLiZe program once compiled. We recall that FoCaLiZe supports the redefinition of functions, which

permits for example to specialise the code to a specific representation of data (for example, there exists a

generic implementation of integer addition modulo n but this implementation can be redefined in arithmetics

modulo 2, if boolean values are used to represent the two values). In summary, FoCaLiZe is also a very

convenient tool to maintain software.

1.7.1 Consistency of the Software

All along the FoCaLiZe development cycle, the compiler keeps trace of dependencies between species,

methods, and proofs . . . to ensure that all the modifications are consistently propagated to any place that

needs to be changed.

FoCaLiZe deals with two types of dependencies:

• The decl-dependency: a method A decl-depends on a method B, if the declaration of B is required

to state A.

• The def-dependency: a method (and more especially, a theorem) A def-depends on a method B, if the

definition of B is required to state A (and more especially, to prove the property stated by the theorem

A).

The redefinition of a function may invalidate the proofs that use the properties of the body of the function.

All the proofs which truly depend of the definition are then invalidated by the compiler and must be done

again in the updated context where the function gets the new definition. Thus, choose the proper level in the

hierarchy to do a proff is a major practical difficulty. In [27], Prevosto and Jaume propose a coding style to

minimise the number of proofs to be redone in case of redefinition, by using a certain kind of modularisation

for the proofs.

1.7.2 Code Generation

FoCaLiZe currently compiles programs toward three languages, OCaml to get an executable standalone,

and Coq and Dedukti [7, ?] to have a formal model of the program, with theorems and proofs entirely

machine checked.

In the OCaml code generation, all the logical aspects are discarded since they do not lead to executable

code.

In contrast, in Coq and Dedukti, all the methods are compiled, i.e. “computational” methods and logical

methods with their proofs. This allows the proof checker to check the entire consistence of the system

developed in FoCaLiZe.

19

1.7.3 Tests

FoCaLiZe incorporates a tool named FocalTest [21] for Integration/Validation testing. It allows to confront

automatically a property of the specification with an implementation. It automatically generates test cases,

executes them and produces a test report as an XML document. The property under test is used to generate

the test case but also as an oracle. When a test case fails, it means that a counterexample of the property has

been found: the implementation does not match the property. This surely points out an inconsistency, due

to a problem in the code or in the specification.

The tool FocalTest automatically produces the test environment and the drivers to conduct the tests. It

benefits from the inheritance mechanism to isolate the testing harness from the components written by the

programmer.

The testable properties are required to be broken down into a precondition and a conclusion, both ex-

ecutable. The current version of FocalTest proposes a pure random test cases generation: a test case is

generated, if it satisfies the pre-condition then the verdict of the test case is obtained by executing the post-

condition. For some form of preconditions the test generation process can be computationally challenging.

To overcome this drawback, a constraint based generation is under development: it would allow to directly

produce test cases that satisfy the precondition.

1.7.4 Documentation

The FoCaLiZeDoc tool [20] is a documentation generator. The documentation is automatically extracted

from the FoCaLiZe source, hence the documentation of a component is always in par with its implementa-

tion.

FoCaLiZeDoc uses its own XML format that contains information coming not only from programmer

added structured comments (that are parsed and kept in the program’s abstract syntax tree) and from the

FoCaLiZe concrete syntax but also from the results of the type inference and dependency analysis. From

this XML representation and thanks to some XSLT stylesheets, FoCaLiZeDoc generated a bunch of HTML

or LATEX files. The generated documentation cannot be considered as a complete safety case; however, it

can helpfully contribute to the elaboration of the safety case. In the same way, it is possible to produce

UML models [10] as means to provide a graphical documentation for the FoCaLiZe specifications. The

use of graphical notations appears quite useful when interacting with end-users, as these tend to be more

intuitive and are easier to grasp than their formal (or textual) counterparts. This transformation is based on

a formal schema and captures every aspect of the FoCaLiZe language, so that it has been possible to prove

the soundness of this transformation (semantic preservation).

The FoCaLiZe compiler’s architecture is designed to easily plug third-parties analyses that can benefit

from the internal structures elaborated by the compiler from the source code. This allows, for instance,

to make dedicated documentation tools for custom purposes, just exploiting the information stored in the

FoCaLiZe program’s abstract syntax tree, or the extra information added by some external processes or

specialized analyses.

20

Chapter 2

Installing and Compiling

2.1 Required software

To be able to develop with the FoCaLiZe environment, a few third party tools are required. All of them can

be freely downloaded from their related website.

• The Objective Caml compiler (version ≥ 3.10.2).

Available at http://caml.inria.fr. This will be used to compile both the FoCaLiZe system at

installation stage from the tarball and the FoCaLiZe compiler’s output generated by the compilation

of your FoCaLiZe programs.

• The Coq Proof Assistant (version ≥ 8.1pl4).

Available at http://coq.inria.fr. This will be used to compile both the FoCaLiZe libraries at

installation stage from the tarball and the FoCaLiZe compiler’s output generated by the compilation

of your FoCaLiZe programs.

• The Dedukti Logical Framework (version ≥ 2.5).

Available at https://github.com/Deducteam/Dedukti. This will be used to compile both

the FoCaLiZe libraries at installation stage from the tarball and the FoCaLiZe compiler’s output

generated by the compilation of your FoCaLiZe programs. The Sukerujo parser is used, it is available

on the sukerujo branch of Dedukti git repository.

Note that some distributions of FoCaLiZe includes these tools and are automatically installed during

the FoCaLiZe installation process.

2.2 Optional software

The FoCaLiZe compiler can generate dependencies graphs from compiled source code. It generates them in

the format suitable to be processed and displayed by the dotty tools suite of the “Graphwiz” package. If you

plan to examine these graphs, you also need to install this software from http://www.graphviz.org/.

2.3 Operating systems

FoCaLiZe was fully developed under Linux using free software. Hence, any Unix-based operating system

should support FoCaLiZe. The currently tested Unix are: Fedora, Debian, Suse, BSD.

21

Windows users can run FoCaLiZe via the Unix-like environment Cygwin providing both users and

developers tools. This software is freely distributed and available at http://www.cygwin.com/.

From the official Cygwin web site: “Cygwin is a Linux-like environment for Windows. It consists of

two parts: A DLL (cygwin1.dll) which acts as a Linux API emulation layer providing substantial Linux API

functionality. A collection of tools which provide Linux look and feel. The Cygwin DLL currently works with

all recent, commercially released x86 32 bit and 64 bit versions of Windows, with the exception of Windows

CE. Cygwin is not a way to run native linux apps on Windows. You have to rebuild your application from

source if you want it to run on Windows.

Cygwin is not a way to magically make native Windows apps aware of UNIX R© functionality, like

signals, ptys, etc. Again, you need to build your apps from source if you want to take advantage of Cygwin

functionality.”

Under Cygwin, the required packages are the same as those listed in 2.1 and 2.2. As stated in Cygwin’s

citation above, you need to get the sources packages of this software and compile them yourself, following

information provided in these packages.

The installation of FoCaLiZe itself is the same for all operating systems and is described in the following

section (2.4).

2.4 Installation

FoCaLiZe is currently distributed as a tarball containing the whole source code of the development envi-

ronment. You must first deflate the archive (a directory will be created) by:

tar xvzf focalize-x.y.z.tgz

Where x.y.z is the version number. Next, go in the sources directory:

cd focalize-x.x.x/

You now must configure the build process by:

./configure

The configuration script then asks for directories where to install the FoCaLiZe components. You may just

press enter to keep the default installation directories.

latour:˜/src/focalize$./configure ˜/pkg

Where to install FoCaLiZe binaries ?

Default is /usr/local/bin.

Just press enter to use default location.

Where to install FoCaLiZe libraries ?

Default is /usr/local/lib/focalize.

Just press enter to use default location.

After the configuration ends, just build the system:

22

make all

And finally, get root priviledges to install the FoCaLiZe system:

su

make install

2.5 Compilation process and outputs

We call compilation unit a file containing source code for toplevel-definitions, species, collections. Visibility

rules, described in section 3.1.13, are defined according to compilation units status. From a compilation unit,

the compiler issues several files described thereafter.

2.5.1 Outputs

A FoCaLiZe development contains both computational code (i.e. code performing operations leading to an

effect, a result) and logical properties.

When compiled, two outputs are generated:

• The “computational code” is compiled into OCaml source that can then be compiled with the OCaml

compiler to lead to an executable binary. In this pass, logical properties are discarded since they do

not lead to executable code.

• Both the “computational code” and the logical properties are compiled into a Coq or Dedukti model.

This model can then be sent to the Coq proof assistant or the Dedukti logical framework who will

verify the consistency of both the “computational code” and the logical properties (whose proofs must

be obviously provided) of the FoCaLiZe development. This means that the Coq code generated is

not intended to be used to generate an OCaml source code by automated extraction. As stated above,

the executable generation is preferred using directly the generated OCaml code. In this idea, Coq

acts as an assessor of the development instead of a code generator.

More accurately, FoCaLiZe first generates a pre-Coq code and a pre-Dedukti code, i.e. a file contain-

ing Coq or Dedukti syntax plus “holes” in place of proofs written in the FoCaLiZe Proof Language.

This kind of files is suffixed by “.zv” or “.sk.zv” instead of directly “.v” or “.sk”. When sending this

file to the prover these “holes” will be filled by effective Coq or Dedukti code automatically gen-

erated by the prover (if it succeed in finding a proof), hence leading to a pure code file that can be

compiled by Coq or Dedukti.

In addition, several other outputs can be generated for documentation or debug purposes. See the section 7

for details.

2.5.2 Compiling a source

Compiling a FoCaLiZe program involves several steps (numbered here 1, 2, 3 and 4) that are automati-

cally handled by the focalizec command. Using the command line options, it is possible to tune the code

generations steps as described in 7.

23

1. FoCaLiZe source compilation. This step reads the FoCaLiZe source code and generates the OCaml

and/or “pre-”Coq code and/or “pre-”Dedukti code. You can disable the code generation for one of

these languages (see page 7), or several, or even all languages, in this case, no code is produced and

you only get the FoCaLiZe object code produced without anymore else output and the process ends

at this point. If you disable one of the target languages, then you won’t get any generated file for it,

hence no need to address its related compilation process described below.

Assuming you generate code for OCaml, Coq, and Dedukti you will get three generated files:

source.ml (the OCaml code), source.zv (the “pre-”Coq code) and source.sk.zv (the

“pre-”Dedukti code).

2. OCaml code compilation. This step takes the generated OCaml code (it is an OCaml source file) and

compile it. This is done like any regular OCaml compilation, the only difference is that the search path

containing the FoCaLiZe installation path and your own used extra FoCaLiZe source files directories

are automatically passed to the OCaml compiler. This step acts like the direct invocation:

ocamlc -c -I /usr/local/lib/focalize -I mylibs

-I myotherlibs source.ml

This produces the OCaml object file source.cmo. Note that you can also ask to use the OCaml

code in native mode, in this case the ocamlopt version of the OCaml compiler is selected (see

OCaml reference manual for more information) and the object files are .cmx files instead of .cmo.

ones.

3. “Pre-”Coq code compilation. This step reads the generated .zv file and produces a real Coq .v

source file. The proofs written in the FoCaLiZe Proof Language are replaced by the effective Coq

proofs found by the Zenon theorem prover. Note that if Zenon fails to find a proof, a hole appears in

the final Coq .v file: the text “TO BE DONE MANUALLY.” is written in place of an effective proof.

The Coq compiler then obviously fails to compile the file, and the user must modify his original

FoCaLiZe source file to provide a tractable proof script for Zenon or insert a direct Coq proof either

in the FoCaLiZe or in the generated Coq source file. This step acts like the direct invocation:

zvtov -new source.zv

For more about the Zenon options, consult the section 5.1.3.

4. “Pre-”Dedukti code compilation. This step reads the generated .sk.zv file and produces a real

Dedukti .sk source file. The proofs written in the FoCaLiZe Proof Language are replaced by the

effective Dedukti proofs found by the Zenon Modulo theorem prover. Zenon Modulo [9] is an

extension of Zenon that implements a powerful proof technique, Deduction Modulo [15], and is able

to produce Dedukti proof terms [8]. This step acts like the direct invocation:

zvtov -new source.sk.zv

All Zenon options are also understood by Zenon Modulo.

24

5. Coq code compilation. This step takes the generated .v code and compiles it with Coq. This is done

like any regular Coq compilation. The only difference is that the search path containing the FoCaLiZe

installation path and your own used extra FoCaLiZe source files directories are automatically passed

to the Coq compiler. This step acts like the direct invocation:

coqc -I /usr/local/lib/focalize -I mylibs

-I myotherlibs source.v

Once this step is done, you have the Coq object files and you are sure that Coq validated you program

model, properties and proofs. The final “assessor” of the tool-chain accepted your program.

6. Dedukti code compilation. This step takes the generated .sk code and compiles it with Dedukti.

This is done like any regular Dedukti compilation. The only difference is that the search path con-

taining the FoCaLiZe installation path and your own used extra FoCaLiZe source files directories

are automatically passed to the Dedukti compiler. This step acts like the direct invocation:

skcheck -e -I /usr/local/lib/focalize -I mylibs

-I myotherlibs source.sk

Once this step is done, you have the Dedukti object files and you are sure that Dedukti validated you

program model, properties and proofs. The final “assessor” of the tool-chain accepted your program.

Once all separate files are compiled, to get an executable from the OCaml object files, you must link

them together, providing the same search path than above and the .cmo files corresponding to all the gener-

ated OCaml files from all your FoCaLiZe .foc files. You also need to add the .cmo files corresponding

to the modules of the standard library you use (currently, this must be done by the user, next versions will

automate this process).

ocamlc -I mylibs -I myotherlibs

install_dir/ml_builtins.cmo install_dir/basics.cmo

install_dir/sets.cmo ...

mylibs/src1.cmo mylibs/src2.cmo ...

myotherlibs src3.cmo mylibs/src3.cmo ...

source1.cmo source2.cmo ...

-o exec_name

25

Chapter 3

The core language

3.1 Lexical conventions

3.1.1 Blanks

The following characters are considered as blanks: space, newline, horizontal tabulation, carriage return,

line feed and form feed. Blanks are ignored, but they separate adjacent identifiers, literals and keywords that

would otherwise be confused as one single identifier, literal or keyword.

3.1.2 Escaped characters

3.1.3 Comments

Comments are treated as blanks and discarded during the compilation process. FoCaLiZe features two

kinds of comments, uni-line comments introduced by -- and general comments enclosed between (* and

*).

Note: The three character sequences (*, *), and -- are named comment delimiters. Due to their

particular lexical role the comment delimiters must be escaped in other regular tokens, in particular string

and character literals.

3.1.3.1 General comments

The two characters (*, with no intervening blanks, start a general comment; the two characters *), with

no intervening blanks, close a general comment. General comments may span on any number of lines and

may be arbitrarily nested. In addition, any legal FoCaLiZe program may be commented out via a general

comment.

Note: Almost arbitrary text can be written inside a general comment, therefore general comments are

used to add explanations in the code to help the reader.

Example:

(* The main species of the development: S.

S contains only one method, m, since m is general enough to perform the

entire work under any circumstance. *)

species S =

...

let m (x in Self) = (* Another useful comment *)

...

26

end

;;

(* Another discarded comment at end of file *)

3.1.3.2 Uni-line comments

The two characters --, with no intervening blanks, start a uni-line comment; a uni-line comment always

spreads to the end of the line.

Note: No general comment marker may appear in a uni-line comment.

Example:

-- Discarded uni-line comment

species S =

let m (x in Self) = -- The powerful m method.

...

end

;;

Note that double quotes (symbol ”) should not appear in comments, and that a spanning comment should

not start with uni-line comment mark. A uni-line comment should also always be terminated by a carriage

return (an unclosed uni-line comment cannot end a file).

3.1.4 Annotations

Annotations are introduced by the three characters (**, with no intervening blanks, and terminated by the

two characters *), with no intervening blanks. Annotations cannot occur inside string or character literals

and cannot be nested. They must precede the construct they document. In particular, a source file cannot

end by an annotation.

Unlike comments, annotations are kept during the compilation process and recorded in the compilation

information (“.fo” files). Annotations can be processed later on by external tools that could analyse them

to produce a new FoCaLiZe source code accordingly. For instance, the FoCaLiZe development environ-

ment provides the FoCaLiZeDoc automatic production tool that uses annotations to automatically generate

documentation. Several annotations can be put in sequence for the same construct. We call such a sequence

an annotation block. Using embedded tags in annotations allows third-party tools to easily find out anno-

tations that are meaningful to them, and safely ignore others. For more information, consult 8. Example:

(** Annotation for the automatic documentation processor.

Documentation for species S. *)

species S =

...

let m (x in Self) =

(** {@TEST} Annotation for the test generator. *)

(** {@MY_TAG_MAINTAIN} Annotation for maintainers. *)

... ;

end ;;

3.1.5 Identifiers

FoCaLiZe features a rich class of identifiers with sophisticated lexical rules that provide fine distinction

between the kind of notion a given identifier can designate.

27

3.1.5.1 Introduction

Sorting words to find out which kind of meaning they may have is a very common conceptual categorisation

of names that we use when we write or read ordinary English texts. We routinely distinguish between:

• a word only made of lowercase characters, that is supposed to be an ordinary noun, such as “table”,

“ball”, or a verb as in “is”, or an adjective as in “green”,

• a word starting with an uppercase letter, that is supposed to be a name, maybe a family or Christian

name, as in “Kennedy” or “David”, or a location name as in “London”.

We use this distinctive look of words as a useful hint to help understanding phrases. For instance, we

accept the phrase ”my ball is green” as meaningful, whereas ”my Paris is green” is considered a nonsense.

This is simply because ”ball” is a regular noun and ”Paris” is a name. The word ”ball” as the right lexical

classification in the phrase, but ”Paris” has not. This is also clear that you can replace ”ball” by another

ordinary noun and get something meaningful: ”my table is green”; the same nonsense arises as well if you

replace ”Paris” by another name: ”my Kennedy is green”.

Natural languages are far more complicated than computer languages, but FoCaLiZe uses the same kind

of tricks: the “look” of words helps a lot to understand what the words are designating and how they can be

used.

3.1.5.2 Conceptual properties of names

FoCaLiZe distinguishes 4 concepts for each name:

• the fixity assigns the place where an identifier must be written,

• the precedence decides the order of operations when identifiers are combined together,

• the categorisation fixes which concept the identifier designates.

• the nature of a name can either be symbolic or alphanumeric.

Those concepts are compositional, i.e. all these concepts are independent from one another. Put is

another way: for any fixity, precedence, category and nature, there exist identifiers with this exact set of

properties.

We further explain those concepts below.

3.1.5.3 Fixity of identifiers

The fixity of an identifier answers to the question “where this identifier must be written ?”.

• a prefix is written before its argument, as sin in sin x or − in −y,

• an infix is written between its arguments, as + in x + y or mod in x mod 3.

• a mix-fix is written among its arguments, as if ... then ... else ... in if c then 1 else 2.

In FoCaLiZe, all the ordinary identifiers are prefix and all the binary arithmetics operators are infix as

they are in mathematics.

28

3.1.5.4 Precedence of identifiers

The precedence rules out where implicit parentheses take place in a complex combination of symbols. For

instance, according to the usual mathematical conventions:

• 1 + 2 ∗ 3 means 1 + (2 ∗ 3) hence 7, it does not mean (1 + 2) ∗ 3 which is 9,

• 2 ∗ 3 4 + 5 means (2 ∗ (3 4)) + 5 hence 167, it does not mean ((2 ∗ 3) 4) + 5 which is 1301,

nor 2 ∗ (3 (4 + 5)) which is 39366.

In FoCaLiZe, all the binary infix operators have the precedence they have in mathematics.

3.1.5.5 Categorisation of identifiers

The category of an identifier answers to the question “is this identifier a possible name for this kind of

concept ?”. In programming languages categories are often strict, meaning that the category exactly states

which concept attaches to the identifier.

For FoCaLiZe there are two categories of identifiers, the lowercase and the uppercase identifiers.

• a lowercase identifier designates a simple entity of the language. It may name some of the language

expressions, a function name, a function parameter or bound variable name, a method name, a type

name, or a record field label name.

• an uppercase identifier designates a more complex entity in the language. It may name a sum type

constructor name, a module name, a species or a collection name.

Roughly speaking, the first letter of an identifier fixes its category: if the first letter is lowercase the

identifier is lowercase, and conversely if an identifier starts with an uppercase letter it is indeed an uppercase

identifier.

More precisely, we classify identifiers by looking at their starter character: the starter character is the

first character of the identifier that is not an underscore. Considering underscores as some sort of spacing

marks into names, the starter character is the first “meaningful” character of the identifier,

Recall that the category of identifiers is orthogonal to the rest of their properties. For instance, the fixity

of an identifier does not tell if the identifier is lowercase or not. Put it another way: as stated above, + is

infix but this does not say if + is a lowercase or uppercase identifier! (In fact + is lowercase, since as stated

below its ’+’ starter character is a lowercase symbolic character.)

3.1.5.6 Nature of identifiers

In FoCaLiZe identifiers are either:

• symbolic: the identifier contains characters that are not letters. +, :=, ->, +float are symbolic.

• alphanumeric: the identifier only contains letters, digits and underscores. x, 1, Some, Basic object

are alphanumeric.

3.1.5.7 Alphanumeric identifiers

An alphanumeric identifier is a sequence of letters, digits, and (the underscore character). Letters contain

at least the 52 lowercase and uppercase letters from the standard ASCII set. In an identifier, all characters

are meaningful.

29

Alphanumeric lowercase identifiers designate the names of variables, functions, types. and labels of

records.

Alphanumeric uppercase identifiers designate the names of constructors, species, and collections.

digit ::= 0 . . .9

lower ::= a . . .z

upper ::= A . . .Z

letter ::= lower | upper

lident ::= { }∗ lower {letter | digit | }∗

uident ::= { }∗ upper {letter | digit | }∗

ident ::= lident | uident

Roughly speaking, an alphanumeric lowercase identifier is a sequence of letters, digits, and (the under-

score character), starting with a lowercase alphanumeric letter (a lowercase letter, a digit, or an underscore).

More precisely, an alphanumeric identifier is lowercase if its starter character (or first “meaningful”

letter) is lowercase.

Examples: foo, bar, 20, gee 42 are lowercase alphanumeric identifiers; foo, bar, 20,

Roughly speaking, an alphanumeric uppercase identifier is a sequence of letters, digits, and (the un-

derscore character), starting with an uppercase letter.

More precisely, an alphanumeric identifier is uppercase if its starter character (or first “meaningful”

letter) is uppercase.

Examples: Some, None, One , Basic object, GEE 42 are uppercase alphanumeric identifiers.

3.1.5.8 Infix/prefix operators

FoCaLiZe allows infix and prefix operators built from a “starting operator character” and followed by a

sequence of regular identifiers or operator characters. For example, all the following are legal operators: +,

++, ˜+zero, = mod 5.

The position in which to use the operator (i.e. infix or prefix) is determined by the position of the first

operator character according to the following table:

Prefix Infix

‘ ˜ ? $! # , + - * / % & | : ; < = > @ ˆ \

prefix-char ::= ‘ | ˜ | ? | $ | ! | #

infix-char ::= , | + | - | * | / | % | & | | | : | ; | < | = | > | @ | ˆ | \

prefix-op ::= prefix-char {letter | prefix-char | infix-char | digit | }∗

infix-op ::= infix-char {letter | prefix-char | infix-char | digit | }∗

operator ::= infix-op | prefix-op

Hence, +, ++ and = mod 5 are infix symbolic operators and ˜+zero is a prefix symbolic one.

30

Note that symbolic character starters are classified into disjoint sets of uppercase and lowercase charac-

ters.

| ’*’

| ’+’ | ’-’

| ’/’ | ’%’ | ’&’ | ’|’ | ’<’ | ’=’ | ’>’ | ’@’ | ’ˆ’ | ’\\’

are lowercase infix starters; , ?, $ are lowercase prefix starters; :, ‘ are uppercase infix starters; (,

[, { are uppercase prefix starters.

For instance, + and @++ are lowercase infix identifiers. Since its starter is :, :: is an uppercase infix

identifier; hence, as any other uppercase identifier, :: could designate a value constructor name for a union

type. Similarly [] is an uppercase prefix identifier that also could designate a value constructor. On the

contrary, no notation starting with a : can designate a method name.

3.1.5.9 Defining an infix operator

The notion of infix/prefix operator does not mean that FoCaLiZe defines all these operators: it means that

the programmer may freely define and use them as ordinary prefix/infix operators instead of only writing

prefix function names and regular function application. For instance, if you do not like the FoCaLiZe

predefined ˆ operator to concatenate strings, you can define your own infix synonym for ˆ, say ++, using:

let (++) (s1, s2) = s1 ˆ s2 ;

Then you can use the ++ operator in the usual way

let hw = "Hello" ++ " world!" ;

As shown in the example, at definition-time, the syntax requires the operator to be embraced by paren-

theses. More precisely, you must enclose the operator between spaces and parentheses. You must write (

+) with spaces, not simply (+) (which leads to a syntax error anyway).

3.1.5.10 Prefix form notation

The notation (op) is named the prefix form notation for operator op.

Since you can only define prefix identifiers in FoCaLiZe, you must use the prefix form notation to define

an infix or prefix operator.

When a prefix or infix operator has been defined, it is still possible to use it as a regular identifier using

its prefix form notation. For instance, you can use the prefix form of operator ++ to apply it in a prefix

position as a simple regular function:

(++) ("Hello", " world!") ;

Warning! A common error while defining an operator is to forget the blanks around the operator. This

is particularly confusing, if you type the * operator without blanks around the operator: you write the lexical

entity (*) which is the beginning (or the end) of a comment!

The FoCaLiZe notion of symbolic identifiers goes largely beyond simple infix operators. Symbolic

identifiers let you assign sophisticated names to your functions and operators. For instance, instead of

creating a function to check if integer x is equal to the predecessor of integer y, as in

let is_eq_to_predecessor (x, y) = ... ;

... if is_eq_to_predecessor (5, 7) ... ;

31

it is possible to directly define

let (=pred) (x, y) = ... ;

... if 5 =pred 7 ... ;

Attention : since a comma can start an infix symbol, be careful when using commas to add a space

after each comma to prevent confusion. In particular, when using commas to separate tuple components,

always type a space after each comma. For instance, if you write (1,n) then the lexical analyser finds

only two words: the integer 1 as desired, then the infix operator ,n which is certainly not the intended

meaning. Hence, following usual typography rules, always type a space after a comma (unless you have

define a special operator starting by a comma).

Rule of thumb: The prefix version of symbolic identifiers is obtained by enclosing the symbol between

spaces and parens.

3.1.6 Extended identifiers

Moreover, FoCaLiZe has special forms of identifiers to allow using spaces inside or to extend the notion of

operator identifiers.

• Delimited alphanumerical identifiers. They start by two ‘ (backquote) characters and end by two ’

(quote) characters. In addition to usual alpha-numerical characters, the delimited identifiers can have

spaces. For example: ‘‘equal is reflexive’’, ‘‘fermat conjecture’’.

• Delimited symbolic identifiers. They are delimited by the same delimiter characters and contain

symbolic characters.

As usual, the first meaningful character at the beginning of a delimited identifier rules out its conceptual

properties. For instance, ‘‘equal is reflexive’’ has e as its first meaningful character; hence

‘‘equal is reflexive’’ is alphanumeric, prefix, lowercase, and has the same precedence as any

other regular function. Similarly, ‘‘+ for matrices’’ starting with the + symbol is symbolic, infix,

lowercase, and has the same precedence as the + operator.

3.1.7 Species and collection names

Species, collection names and collection parameters are uppercase identifiers.

32

3.1.8 Integer literals

binary-digit ::= 0 | 1

octal-digit ::= 0 . . .7

hexadecimal-digit ::= 0 . . .9 | A . . .F | a . . .f

sign ::= + | -

unsigned-binary-literal ::= 0 (b | B) binary-digit {binary-digit | }∗

unsigned-octal-literal ::= 0 (o | O) octal-digit {octal-digit | }∗

unsigned-decimal-literal ::= digit {digit | }∗

unsigned-hexadecimal-literal ::= 0 (x | X) hexadecimal-digit {hexadecimal-digit | }∗

unsigned-integer-literal ::= unsigned-binary-literal

| unsigned-octal-literal

| unsigned-decimal-literal

| unsigned-hexadecimal-literal

integer-literal ::= [sign] unsigned-integer-literal

An integer literal is a sequence of one or more digits, optionally preceded by a minus or plus sign and/or

a base prefix. By default, i.e. without a base prefix, integers are in decimal. For instance: 0, -42, +36.

FoCaLiZe syntax allows to also specify integers in other bases by preceding the digits by the following

prefixes:

• Binary: base 2. Prefix is 0b or 0B. Digits are [0-1].

• Octal: base 8. Prefix is 0o or 00. Digits are [0-7].

• Hexadecimal: base 16. Prefix is 0x or 0X. Digits are [0-9] [A-F] [a-f].

Here are various examples of integers in various bases: -0x1Ff, 0B01001, +Oo347, -OxFF FF.

3.1.9 String literals

string-literal ::= " {plain-char | \ char-escape}∗ "

plain-char ::= any printable character except backslash (\) and double quote (")

char-escape ::= b | n | r | t
| | " | ’ | * | \ | ‘ | -
| (|) | [|] | { | } | %
| digit digit digit

| hexadecimal-digit hexadecimal-digit

String literals are sequences of any characters delimited by " (double quote) characters (ipso facto with

no intervening "). Escape sequences (meta code to insert characters that can’t appear simply in a string)

available in string literals are summarised in the table below:

33

Sequence Character Comment

\b \008 Backspace.

\n \010 Line feed.

\r \013 Carriage return.

\t \009 Tabulation.

\ Space character.

\" " Double quote.

\’ ’ Single quote.

* * Allows e.g. for insertion of “(*” in a string

\((

See comment above for *

\))

\[[

\]]

\{ {
\} }

\\ \ Backslash character.

\‘ ‘ Backquote character.

\- - Minus (dash) character. As for multi-line

comments, uni-line comments can’t appear in

strings. Hence, to insert the sequence “--”

use this escape sequence twice.

\digit digit digit The character whose ASCII code in decimal

is given by the 3 digits following the \. This

sequence is valid for all ASCII codes.

\0x hex hex The character whose ASCII code in hexadec-

imal is given by the 2 characters following the

\. This sequence is valid for all ASCII codes.

3.1.10 Character literals

character-literal ::= ’ (plain-char | \ char-escape) ’

Characters literals are composed of one character enclosed between two “’” (quote) characters. Exam-

ple: ’a’, ’?’. Escape sequences (meta code to insert characters that can’t appear simply in a character

literal) must also be enclosed by quotes. Available escape sequences are summarised in the table above (see

section 3.1.9).

34

3.1.11 Floating-point number literals

decimal-literal ::= [sign] unsigned-decimal-literal

hexadecimal-literal ::= [sign] unsigned-hexadecimal-literal

scientific-notation ::= e | E

unsigned-decimal-float-literal ::= unsigned-decimal-literal [. {unsigned-decimal-literal}∗]
[scientific-notation decimal-literal]

unsigned-hexadecimal-float-literal ::= unsigned-hexadecimal-literal [. {unsigned-hexadecimal-literal}∗]
[scientific-notation hexadecimal-literal]

unsigned-float-literal ::= unsigned-decimal-float-literal

| unsigned-hexadecimal-float-literal

float-literal ::= [sign] unsigned-float-literal

Floating-point numbers literals are made of an optional sign (’+’ or ’-’) followed by a non-empty se-

quence of digits followed by a dot (’.’) followed by a possibly empty sequence of digits and finally an

optional scientific notation (’e’ or ’E’ followed an optional sign then by a non-empty sequence of digits. Fo-

CaLiZe allows floats to be written in decimal or in hexadecimal. In the first case, digits are [0-9]. Example:

0., -0.1, 1.e-10, +5E7. In the second case, they are [0-9 a-f A-F] and the number must be prefixed by

“0x” or “0X”. Example 0xF2.E4, 0X4.3A, Ox5a.a3eef, Ox5a.a3e-ef.

3.1.12 Proof step bullets

proof-step-bullet ::= < {digit}+ > {letter | digit}+

A proof step bullet is a non-negative non-signed integer literal (i.e. a non empty sequence of [0-9] char-

acters) delimited by the characters < and >, followed by a non-empty sequence of alphanumeric characters

(i.e. [A-Z a-z 0-9]). The first part of the bullet (i.e. the integer literal) stands for the depth of the bullet and

the second part stands for its name. Example:

<1>1 assume ...

...

prove ...

<2>1 prove ... by ...

<2>f qed by step <2>1 property ...

<1>2 conclude

3.1.13 Name qualification

Name qualification is done according to the compilation unit status.

As precisely described in section (4.1.1), toplevel-definitions include species, collections, type defi-

nitions (and their constitutive elements like constructors, record fields), toplevel-theorems and toplevel-

functions. Any toplevel-definition (thus outside species and collections) is visible all along the compilation

unit after its apparition. If a toplevel-definition is required by another compilation unit, you can reference

it by referencing the external compilation unit (with a use or a open command) and then qualifying its

35

name, i.e. making explicit the compilation unit’s name before the definition’s name using the ’#’ character

as delimiter. Examples:

• basics#string stands for the type definition of string coming from the source file “basics.fcl”.

• basics#Basic object stands for the species Basic object defined in the source file “ba-

sics.fcl”.

• db#My db coll!create stands for the method create of a collection My db coll hosted in

the source file “db.fcl”.

The qualification can be omitted by using the open directive that loads the interface of the argument

compilation unit and make it directly visible in the scope of the current compilation unit. For instance:

use "basics";;

species S = inherit basics#Basic_object; ... end ;;

can be transformed with no explicit qualification into:

open "basics";;

species S = inherit Basic_object; ... end ;;

After an open directive, the definitions of loaded (object files of) compilation units are added in head

of the current scope and mask existing definitions wearing the same names. For example, in the following

program:

(* Redefine my basic object, containing nothing. *)

species Basic_object = end ;;

open "basics";;

species S = inherit Basic_object; ... end ;;

the species S inherits from the last Basic object in the scope, that is the one loaded by the open

directive and not from the one defined at the beginning of the program. It is still possible to recover the first

definition by using the “empty” qualification #Basic object in the definition of S:

(* Redefine my basic object, containing nothing. *)

species Basic_object = end ;;

open "basics";;

species S = inherit #Basic_object; ... end ;;

The qualification starting by a ’#’ character without compilation unit name before stands for “the defi-

nition at toplevel of the current compilation unit”.

3.1.14 Reserved keywords

The identifiers below are reserved keywords that cannot be employed otherwise:

alias all and as assume assumed

begin by

caml collection conclude constructor coq coq_require

definition

else end ex external

false final function

hypothesis

if in inherit internal implement is

36

let lexicographic local logical

match measure

not notation

of on open or order

proof prop property prove

qed

rec representation

Self signature species step structural

termination then theorem true type

use

with

Keywords of Coq, Dedukti, or OCaml (for example Set, class), can be safely used in a FoCaLiZe

source code.

Some symbols (such as :) are also reserved, and cannot be used to name methods. It is still possible to

use such symbols as first character of a symbolic identifier.

3.2 Language constructs and syntax

3.2.1 Types

Before dealing with expressions and in general, constructs that allow to compute, let us first examine data-

type definitions since, to emit its result, an algorithm must manipulate data that are more or less specific to

the algorithm. Hence we must know about type definitions to define data that have a convenient shape and

carry the necessary information to model the problem at hand.

Type definitions allow to build new types or more complex types by combining previously existing

types. They always appear as toplevel-definitions, in other words, outside species and collections. Hence a

type definition is visible in the whole compilation unit (and also in other units by using the open directive

or by qualifying the type name as described in section 3.1.13).

3.2.1.1 Type constructors

A type constructor is, roughly speaking, a type name.

FoCaLiZe provides the basic built-in types (constructors):

• int for signed machine integers,

• bool for boolean values (true and false that are hardwired in the syntax or True and False

that are defined in “basics.fcl”),

• float for floating point numbers,

• unit for the trivial type whose only value is (),

• char for characters literals,

• string for strings literals.

Note that these types are translated to OCaml types; for example int on 32-bits architecture encode values

between −230 and +230 − 1.

New type constructors are introduced by type definitions. Types constructors can be parameterised by

type expressions separated by commas and between parentheses.

37

3.2.1.2 Type expressions

Type definitions require type expressions to build more complex data-types.

type-exp ::= lident

| uident

| Self

| ’lident

| lident ({type-exp}(,)+)

| type-exp -> type-exp

| ({type-exp}(*)
+)

| (type-exp)

A type expression can be a type constructor.

A type expression can denote the representation of a species or a collection by using their name, thus

a capitalized name. The special case of Self denotes the representation of the current species. Hence,

obviously Self is only bound in the scope of a species.

Type expressions representing function types are written using the arrow notation (->) in which the type

of the argument of the function is the left type expression and its return type is the right one. As usual in

functional languages, a function with several (say n) arguments is considered as a function with 1 argument

returning a function with n − 1 arguments. Hence, int -> int -> bool is the type of a function

taking 2 integers and returning a boolean.

FoCaLiZe provides native tuples (generalisation of pairs). The type of a tuple is the type of each

of its components separated by a * character and surrounded by parentheses. Hence, (int * bool *
string) is the type of triplets whose first component is an integer, second component is a boolean and

third component is a string, e.g. (-3, true, "test").

Finally, type expressions can be written between parentheses without changing their semantics.

3.2.1.3 Type definitions

A type definition introduces a new type constructor (the name of the type), which becomes available to build

new type expressions. Hence, defining a type is the way to give a name to a new type structure. FoCaLiZe

proposes 3 kinds of type definitions: aliases, sum types and record types.

Aliases

Aliases provide a way to create type abbreviations. It is not handy to manipulate large type expressions

like for instance, a tuple of 5 components: (int * int * int * int * int). Moreover, several

kind of information can be represented by such a tuple. For instance, a tuple with x, y, z (3D-coordinates),

temperature and pressure has the same type as a tuple with year, month, day, hours, minutes. In these two

cases, the manipulated type expression is the same and the two uses cannot be easily differentiated. Type

aliases allows to give a name to a (complex) type expression, for sake of readability or to shorten the code.

Example:

type experiment_conditions = alias (int * int * int * int * int) ;;

type date = alias (int * int * int * int * int) ;;

38

alias-type-def ::= type ident = alias type-exp

In the remaining of the development, the type names experiment conditions and date will be

known to be tuples of 5 integers and will be compatible with any other type being also a tuple of 5 integers.

This especially means that a type alias does not create a really “new” type, it only gives a name to a

type expression and this name is type-compatible with any occurrence of the type expression it is bound to.

Obviously, it is possible to use aliases with and in any type expression or type definition.

Sum types

Sum types provide the way to create new values that belong to the same type. Like 1 or 42 are values

of type int, one may want to have Red, Blue and Green as the only values of a new type called color.

The only means that the created type color is inhabited only by these 3 values. To define such a type, we

itemize its value names (that are always capitalized identifiers) by preceeding them by a | character :

type color =

| Red

| Blue

| Green

;;

Note that the first | character is required: it is not a separator. This especially means that when writing

a sum type definition on a single line, the first | must be written:

type color = | Red | Blue | Green ;;

Values of a sum type are built from the value constructors, i.e. from the names enumerated in the

definition (that must not be confused with the type constructor which is the name of the type. For, instance,

Red is a value of the type constructor color.

Value constructors of sum types can be parameterised by a type expressions, corresponding values

being obtained by applying the value constructor to values of the parameters types. For instance, let’s define

the type of playing cards as king, queen, jack and simply numbered cards:

type card =

| King

| Queen

| Jack

| Numbered (int)

;;

Hence, the Numbered constructor “carries” the integer value written on the card. Some values of type

card are: King, (Numbered 4), (Numbered 42). The Numbered constructor has parameter.

An important attention must be taken for constructors having “several” arguments. FoCaLiZe provides

2 different (“type-incompatible”) ways to make a value constructor carrying several values.

• Either the constructor has 1 argument that is a tuple, i.e. a type expression involving the * constructor.

The corresponding type definition for such a type would be:

type t =

| Cstr (bool * int * string)

;;

39

• Or the constructor has several arguments, i.e. several type expressions separated by a comma.

type t2 =

| Cstr2 (bool, int, string)

;;

means that the constructor Cstr2 has 3 arguments.

This especially important since when matching on such value constructors, confusing the arguments of

Cstr2 with one and unique tuple with 3 components will result in a type error. Below are shown several

pieces of source code with valid/invalid mixes between these concepts.

type mytuple = alias (bool * int * string) ;;

type t =

| Cstr (bool * int * string)

;;

let fct_t1 (x) =

match x with

| Cstr (a, b, c) -> ()

;;

leads to:

Error: Types

(basics#bool * basics#int * basics#string), ’_a, ’_b and

(basics#bool * basics#int * basics#string) are not compatible.

because Cstr expects 1 tuple argument and not 3 arguments.

let fct_t1 (x) =

match x with

| Cstr ((a, b, c)) -> ()

;;

is accepted since it makes explicit that the pattern matches the unique argument of Cstr that is a tuple and

by the way de-structurates this tuple.

let fct_t2 (x) in mytuple =

match x with

| Cstr (x) -> x

;;

is accepted since the type mytuple aliases a 3 components tuples and Cstr is really parametrised by 1

argument that is a 3 components tuple.

let fct_t2 (x) =

match x with

| Cstr2 (a, b, c) -> ()

;;

NOTA: TO BE COMPLETED.

Any type expression, even recursive, can be used as a parameter of value contructors. For instance, the

type of lists of boolean × integer pairs could be defined like:

40

type b_i_list =

| Empty

| Cons ((bool * int) * b_i_list)

;;

From this type definition, a value of type b i list is either empty (constructor Empty) or has a head

(the first component of the Cons constructor) and a tail list (the second component of this constructor):

Cons ((false, 2), (Cons ((true, 1), Empty))). The length of this list is 2 and its ele-

ments are (false, 2) followed by (true, 1).

type-params ::= ({’ lident}(,)+)

type-args ::= ({type-exp}(,)+)

constructor ::= | uident [type-args]

sum-type-def ::= type lident [type-params] = {constructor}+

Record types

Record types provide a way to aggregate data of various types, a bit like tuples, but naming the compo-

nents of the group, instead of differentiating them by their position like in tuples. A record is a sequence of

names and types between braces. For example:

type experiment_conditions = {

x : int ;

y : int ;

z : int ;

temperature : int ;

pressure : int

} ;;

type identity = {

name : string ;

birth : int ;

living : bool

} ;;

field ::= lident = type-exp ;

record-type-def ::= type lident type-params = { {field}+ }

To create a value of a record type, a value must be provided for each field of the record.

{ name = "Benjamin" ; birth = 2003 ; living = true }

Like in tuples, records can mix types of fields.

Parameterised type definitions

It is possible, at toplevel, to parameterise a type definition with a type variable that can be instantiated

by any type expression. A type variable is written as an identifier preceded by a ’ (quote) character.

41

For instance, the type definition of generic (polymorphic) lists may be defined by:

type list (’a) =

| Empty

| Cons (’a, list (’a))

;;

The value constructor Cons carries a value of type “variable” and a tail of type list with its parameter

instantiated by the same type variable. This explicitly says that all the elements of such a list have the

same type. It is now possible to use the list type in type expressions by providing a type expression

as argument of the type constructor list. For instance, list (int) is the type of lists containing

integers, list (list (char)) is the type of lists containing lists of characters.

Parameterised record types can also be introduced, as in the following example:

type pair (’a, ’b) = {

first : ’a ;

second : ’b

} ;;

type int_bool_pair = pair (int, bool) ;;

3.2.2 Mutually Recursive Types Definitions

Only sums. Syntax: type ldots with . . .

3.2.3 Type-checking

The type-checking process is roughly similar to ML type-checking. Polymorphic types are allowed at top-

level. However, methods are not allowed to be polymorphic. This means that their types cannot contain

variables. But they may contain collection parameters as stated in section 4.2.1.

A type t1 is an instanciation of a type t2 if t1 is obtained by replacing some type variables of t2 by a

“more defined type expression”.

For example, ′a → int → bool is an instanciation of ′a → int →′ c since we replaced the variable
′c by the type bool.

Two types t1 and t2 are said compatible if they have a common instanciation. For the intuition, this

means that there is an instanciation of the variables in t1 and an instanciation of the variables in t2 such

that these instanciations make t1 and t2 the same type. Note that type variables appearing in different type

expressions are different variables, that is ′a → int and bool →′ a are compatible.

For example, we consider the two following types:

• t1 =
′ a → int →′ b →′ c

• t2 = bool →′ d →′ d →′ e

In t1 we replace: ′a by bool, and we leave the others variables unchanged. We get the new type

t′1 = bool → int →′ b →′ c.

In t2, we replace ′d by int, ′e by ′c. We get the new type t′2 = bool → int → int →′ c.

The type t′1 is an instanciation of t1. The type t′2 is an instanciation of t2. The two types t′1 and t′2 are

structurally the same. Hence t1 and t2 are compatible.

As it can be seen, an instanciation does not need to give a value to all the type variables.

42

For the sake of intuition, compatibility is a generalisation of the notion of types being “equal”. The

most trivial instanciation appears when the two types do not have any type variables; in this case they are

compatible iff they are structurally equal. This illustrates the common view of “being a good type” when for

instance providing an argument to a function according to the type of the expected argument in the function’s

prototype.

3.2.4 Representations

As further explained (see section 4.1.2) the representation is a method of a species that describes the internal

data structure that the species manages. Hence, it is a kind of type definition, more accurately an alias

type definition. This means that a representation does not introduce a new type, it only “assigns” to the

representation a type expression defining the type of the manipulated entities of the species. Moreover,

like for any other methods (cf. section 4.1.2), the representation must not be a polymorphic type. Thus its

definition cannot contain type variables (but may contain collection parameter names). Defining a species’

representation is simply done by adding the representation method:

open "basics" ;;

species IntPair =

representation = (int * int) ;

end ;;

Recall that the type introduced by the method representation is denoted by Self within the

species.

representation ::= representation = type-exp

3.2.5 Expressions

Expressions are constructs of the language that are evaluated into a value of a certain type. Hence values

and types are not at the same level. Types serve to classify values into categories. Although proofs may

contain expressions, we describe them in Sec. 5. Indeed proofs are not expressions, they do not lead to

FoCaLiZe values thus live at another level.

43

qualified-uident ::= [[ident] #] uident

qualified-lident ::= [[ident] #] lident

lident-or-operator ::= lident | (operator)

method-ident ::= [Self] ! lident-or-operator

| [lident #] uident ! lident-or-operator

exp ::= integer-literal

| string-literal

| character-literal

| float-literal

| true | false
| qualified-uident

| method-ident

| let rec {let-binding}(and)+ in exp

| if exp then exp else exp

| match exp with {match-binding}+

| exp ({exp}(,)+)

| prefix-op exp

| exp infix-op exp

| { {record-field-value}(;)+ }
| { exp with {record-field-value}(;)+ }
| exp . qualified-lident

| (exp)

record-field-value ::= qualified-lident = exp

let-binding ::= lident [in type-exp] = exp

| lident ({lident in type-exp}(,)+) = exp

match-binding ::= | pattern -> exp

pattern ::= integer-literal

| string-literal

| character-literal

| float-literal

| true | false
| lident

| qualified-uident [({pattern}(,)+)]
|
| { {record-field-pattern}(;)+ }
| ({pattern}(,)+)

| (pattern)

record-field-pattern ::= qualified-lident = lident

44

3.2.5.1 Literal expressions

The literal expressions of type integer, string, character, float and boolean are evaluated into the constant

represented by the literal. The expression 25 denotes the value 25 of type int.

3.2.5.2 Sum type value constructor expressions

We presented in section 3.2.1.3 the way to define sum types. We saw that values of such a type are built

using its value constructors.

Hence, for value constructors with no argument, the constructor itself is an expression that gets evaluated

in a value wearing the same name.

For value constructors with parameters, a value is created by evaluating an expression applying the

constructor to as many expressions as the constructor’s arity. Obviously, sub-expressions used as arguments

of the constructor must be well-typed (compatible) according to the type of the constructor. The resulting

value is denoted by the name of the constructor followed by the tuple of values given as arguments. For

instance, with the following type definition:

type t =

| A

| B (int * bool)

;;

the expression A is evaluated into A, the expression B ((2 + 3), true) is evaluated into the value

B(5, true).

3.2.5.3 Identifier expressions

An identifier expression is either a basic identifier, an extended identifier or a qualified identifier (see section

3.1.13), which denotes the value of this identifier in the scope of the expression. The identifier is said to be

bound to this value.

The value bound to an identifier can be of any type. A value having a functional type, that is a functional

value (also called a closure), is created by a function definition. Such a value, obtained by the evaluation of

the body of the function, is slightly different from other ones since it embeds both the code of the function

(i.e. a kind of evaluation of its body expression) and its environment (i.e. bindings between identifiers

occuring in the body of the function and their value in the definition scope). This closure will be kept

untouched until it appears in a functional application expression as described further in 3.2.5.9.

There are several possibilities to bind an identifier. Definitions introduce a basic or extended identifier

and binds it to the value of the expression stated in the definition. There are three ways to introduce and

directly bind an identifier:

• by a let-in construct,

• by a toplevel-let-definition,

• by a method definition (let).

Each of these cases will be described in their related section.

There are two ways to introduce basic identifiers as parameters:

• in a function definition

• by a pattern inside a match-with construct

45

Then the binding of the parameter is deferred until the application of the function or the pattern-matching

mechanism. Each of these cases will be described in their related section.

Suppose that an expression exp contains several occurrences of an identifier my var. Assume that, in

the scope of exp, my var is bound to a value v, then each occurrence of my var in exp is substituted

by v during the evaluation of exp. This is basically the principle of the so-called eager or call by-value

evaluation regime.

Identifier resolution Remember that identifiers forms differ depending on the syntactic class of entity they

refer to, capitalized identifiers being used for species and collections. To evaluate an identifier expression,

the FoCaLiZe compiler tries to find its definition from the current scoping context. It searches for the

closest (latest) definition with this name, starting by the parameters present in the current definition (i.e.

formal parameters in a function and in a match-with construction and let-in bound identifiers). If no

identifier definition with this name is found, the search goes on among the methods of the current species.

If a method is found with this name, it will be retained, otherwise the identifier is looked in the preceding

toplevel-definitions of the current compilation unit. If no suitable definition is found, then the ones imported

by the open directives are examined to find one with the searched name. Finally if no definition is found,

the identifier is reported unbound by an error message.

Note that an open directive may arise anywhere at toplevel in the source code. Hence, the order of

search between the current file’s toplevel-definitions and the imported ones by open is not really separated:

the name resolver looks for the most recent definition considering that the toplevel-definitions and the im-

ported ones are ordered according to the apparition of the effective definitions in the file themselves and the

imported ones. In other words, if a toplevel-definition exists for an entity foo, if later an opendirective

imports another foo, then this last one will be the retained one.

Identifier qualification

Identifiers can manually be disambiguated in term of compilation unit location using the sharp (#) nota-

tion as explained in section 3.1.13.

As further presented in section 4.2.1, species methods identifiers are made explicit using the “!” notation.

The notation Spe!meth stands for “the method meth of the species Spe”. By extension, !meth stands

for the method meth of the current species. It is possible to explicit Self in the naming scheme using

Self!meth. This is useful when a more recently defined identifier hides a method of the species at hand:

species S =

let m (x in ...) = ... ;

let n (y in ...) =

...

let m = ... in

(* Want to call the *method* "m" with argument the local "m" !!! *)

!m (m) ;

end ;;

Hence, the name resolution mechanism allows to omit the “!” but making it explicit can help for conflicts

resolution. Moreover, when invoking species parameters’ methods, the name resolution never searches

among methods of collection parameters, hence the explicit “!” notation is required.

As the grammar shows, name qualification by compilation unit and hosting species can be freely mixed.

We can build identifiers like my file#My species!my method to refer to the method my method

hosted in the species My species located in the FoCaLiZe source file “my file.fcl”. These disambiguation

methods are indeed orthogonal.

46

Extended identifier expressions

Finally, infix/postfix operators can be used as regular identifiers. Usually, an operator is syntactically

used according to it prefix or infix nature. For instance, the binary + operator is used between its arguments

as in x + 4, the unary operator ˜ is used before its argument as in ˜x. FoCaLiZe allows to refer to those

operators as regular identifiers (for instance as function parameters). This allows to use operators as any

other identifiers, and

• using them as regular function (i.e. in functional position),

• bind them as arguments of functions,

• use them as regular identifiers in expressions, for example to pass them as arguments of other func-

tions.

The following example illustrate the second point:

let twice((+), x, y, z) = (x + y) + z ;;

To get an identifier from an operator, its symbol (cf. 3.1.6) must be delimited by spaces and enclosed

into matching parentheses. For example: (+) is the regular identifier corresponding to the infix symbol

+.

Note that spaces around the operator symbol are mandatory and part of the syntax. If spaces are omitted,

the parens get their usual meaning and the interpretation can be completely different. A specially puzzling

error is to write (*) to mean (*):

...

let (*) (x, y) = ...

Now, (* is evidently parsed as the beginning of comment, leading to a syntax error or any other cryptic

error long after the faulty (* occurrence. Conversely *) is always considered as an end of comment by the

lexical analyzer.

3.2.5.4 let-in expression

let-in expression binds an identifier to a value to evaluate a trailing expression (the “in-part” of the

“let-in” or “body”) where this ident may appear. During the evaluation of the trailing expression, any

occurrence of the bound identifier is “replaced” by the value bound to this identifier. For instance:

let x = 3 + 2 in (x, x)

binds x to the evaluation of the expression (3+2) (i.e. the integer value 5) and then, the evaluation of the

trailing expression returns the tuple value (5, 5). From the syntax, it is clear that let-in constructs can be

nested. For instance,

let x = 3+2 in

let y = (x, x) in

let z = true in

(y, z, y, z)

returns the value ((5, 5), true, (5, 5), true) of type ((int * int) * bool * (int * int) *

bool).

Note that the notion of “binding an identifier to a value” is essentially different from the notion of

assignment in imperative languages. In such languages (like C, Java, Pascal,. . .) a variable is first declared,

47

then a value is assigned to the variable. It is thus possible to assign a variable several times to different

values. For example in C:

...

{

int i ;

... ;

i = 10 ;

while (i > 0) i = i-- ;

}

...

The variable i is declared, then assigned the initial value 10, then the while loop makes it decreasing

by successive assignments.

In a let-in binding construct, an identifier is given a value once and for all: it is impossible to change

its value, once it has been bound. Each new definition, binding an already bound identifier will just hide the

old definition. For instance:

let x = 5 in

let y = (x, x) in

let x = true in

let z = (x, x) in

(y, x, y, x)

leads to the value ((5, 5), true, (5, 5), true) of type ((int * int) * bool * (int * int) *
bool). Clearly the first value bound to x holds until x is bound again: 5 is used to define y but not to

define z, since the value of x is then the boolean true.

The let-in construct serves to bind an identifier to a value of any type. As a consequence, it can also

bind an identifier to a functional value. This lead to the natural way to define functions. For instance:

let f (x, y) = x + y in

f (6, 7)

The let construct binds f to a function which has 2 parameters x and y, and the body of f is the addition

of these 2 parameters. Then the body of the let-in construct applies f to 2 effective arguments 6 and 7

(we obviously expect the result of this application to be 13). (Function application is explained below in

3.2.5.9).

It is possible to provide a type constraint to precise the type of the return value of a function, or the type

of the let-bound variable or parameters:

let f (x : int, y) = x + y in

f (6, 7)

let f (x : int, y) in int = x + y in

f (6, 7)

let a in int = 3 in

(a, a)

It is possible to define several identifiers at the same time separating each definition by the keyword

and.

...

let f = exp_1

and g = exp_2

and h = exp_3 in exp;

48

All the definitions are separately evaluated “in parallel”. As a consequence, the identifiers introduced

by a let ... and cannot be used in the right members of this construction (in the exp i). Do not

confuse this construct with nested let-in as the followig one, where exp 2 can contain f and exp 3 can

contain f and g.

let f = exp_1 in

g = exp_2 in

h = exp_3 in exp

Mutually recursive functions need to know each other because their bodies call these other functions

and their definition require a non-nested evaluation of each function. In this case, the keyword let must be

followed by the keyword rec.

...

let rec even (x) =

if x = 0 then true else odd (x - 1)

and odd (y) =

if y = 0 then false else even (y - 1) in

...

Warning: in the current version of FoCaLiZe mutually recursive functions cannot be compiled into

Coq code. Only OCaml code generation is available. Moreover, for Coq, recursive functions imply ter-

mination proofs. This last point will be covered in the section 6 especially dedicated to (non-mutually)

recursive function definitions.

3.2.5.5 logical let

As seen above, the let-in construct is used to bind computational expressions. We would sometimes also

like to have parameterised logical expressions, i.e. a kind of functions returning a logical proposition. For

example we may want, for a certain value of x and y, to use the statement “x < y and x+ y < 10” (which

holds or not) to build more complex logical expressions.

To allow functional bindings in logical expressions FoCaLiZe provide the logical let construct.

It serves to introduce a parameterised logical expression, which can be applied to effective arguments to

obtain a logical proposition. Our example would be expressed by:

use "basics" ;;

open "basics" ;;

species S =

...

logical let f (x in int, y in int) = x < y /\ x + y < 10 ;

...

end ;

Since logical let binds an identifier to a logical expression, the body of the definition must ob-

viously be of type bool. Once defined, f can be used as a regular function, but only in properties and

theorems statements. For instance:

use "basics" ;;

open "basics" ;;

species S =

...

let m (x in Self) in int = ... ;

logical let f (x in int, y in int) = x < y /\ x + y < 10 ;

...

49

property p : all a in Self, all b, c in int, f (c, b) => f (m (a), b) ;

end ;

See other examples in the standard library where this construction is used to define associativity, com-

mutativity, . . .

3.2.5.6 final (logical) let

Cannot be redefined by inheritance.

3.2.5.7 Conditional expression

A conditional expression has the form: if exp1 then exp2 else exp3
Its evaluation starts by the evaluation of the exp1 expression which must be of type boolean. If its value

is true then the result value of the whole expression is the value of exp2, otherwise (i.e. if its value is false)

the value of exp3. This obviously implies that exp2 and exp3 must have the same type. This construct is

then a binary conditional expression (i.e. with 2 branches).

let f (x) = if x then 1 else 0 in ...

The function f will return 1 if the effective argument provided for x is true, otherwise it will return 0.

let is_too_small (x) = ... in

let y = ... in

let y_corrected = if is_to_small (y) then 0 else y in ...

In this example, we assume we have a function is too small checking if a value is “too small” and

an identifier y bound to a certain value. The result of the conditional expression bound to y corrected

will be either 0 if the condition is met or y otherwise.

3.2.5.8 Match expression

The match-with construct is a generalised conditional construct with pattern-matching. By “gener-

alised”, we mean that unlike the if-then-else which has only 2 branches, the present expression can

have several branches. The notion of condition here is not anymore a boolean value. Instead, the con-

struct allows to discriminate on the different values an expression is evaluated into. The basic structure of

a match-with consists in a discriminating expression followed by an enumeration of cases (called pat-

terns). The dicriminating expression is evaluated and its value is matched against the patterns, following the

textual ordering of these patterns, until a match succeeds. Then the expression associated with the matching

pattern is evaluated to obtain the value of the whole expression match-with.

let a = ... ;

let x =

match a + 5 with

| 0 -> "zero"

| 5 -> "five"

| 1 -> "one"

| 10 -> "ten"

| _ -> "other" in

...

The discriminated expression in this case is a + 5 of type int. We can then react to each (or some of

the) values of this expression. When a + 5 is equal to 0 the result of the whole match-with expression

50

(bound to the identifier x) is the string “zero”. When a + 5 is equal to 1, the result is the string “one”,

and so on. The final pattern stands for “anything that was not in the previous cases” (also called “catch-all

pattern”). Hence, the order of the patterns is important. If the case | -> was put before the case |1 ->,

then this last case would never be reached since the pattern would have caught the discriminated value.

As a consequence of the structure of this construct, type constraints must be respected in order to have

the whole expression well-typed:

• The type of the discriminating expression must be compatible with the type of the patterns.

• thus all the patterns must have compatible types.

• The types of all the result expressions in the rightmost parts of the cases must be compatible.

• The patterns have to be mutually exclusive (except for the catch-all pattern, see below).

• The different cases have to capture every possible pattern.

In the example above, the patterns were constant. A value matches a constant pattern if and only if it is

equal to this constant. In addition, the match-with construct provides true pattern matching. That is,

patterns may be built from constants, value constructors, variables and the catch-all symbol . Any value

matches any variable pattern and the pattern. For general patterns built from value constructors, variables,

constants, , roughly speaking, a value matches a pattern if this pattern can be seen as a prefix of this value.

Then, the variables of the pattern get bound to the parts of the discriminating expression that are “at the

same place” than those variables. For example:

let e = ... in

...

let x =

match e with

| (0, 0, 0) -> 1

| (0, x, y) -> x + y

| (1, 1, x) -> x

| (x, y, z) -> x + y + z

...

According the the type-checking mechanism, the examined expression e must have here type (int *

int * int). The first pattern will be chosen if e is equal to the tuple (0, 0, 0). We say here “equal” since

there is no variable in the pattern, hence the only way to fit the pattern is to simply be equal. If this pattern

is not fitted, the we examine the second pattern. It will be chosen if e has a 0 as first component and any

integer for the second and the third ones. In this case, the result value will be the evaluation of the expression

x + y where x will be bound to the effective second component of the value of e and y will be bound to

its third component. We can notice that no “catch-all pattern” is needed since the enumerated patterns cover

all the possible values of tuples with 3 components (the last pattern does not put any constraint on the tuple

components, hence will match all the remaining cases).

The previous example used tuples as matched expression and patterns, but patterns also contain sum

type value constructors, hence allowing to “match” on any sum type structure. For example:

type t =

| A

| B (int)

| C (int, int)

;;

...

let e = A ;;

let x =

match e with

51

| A -> 0

| B (3) -> 4

| B (_) -> 10

| C (x, 10) -> 5

| C (_, y) -> y

;;

This example shows different cases following the structure of the type t. Note the use of the “catch-all”

pattern inside patterns. In fact, the “catch-all” pattern acts like a variable unused in the rightmost part of the

case. It is however preferable to use “ ” instead of a variable since OCaml generates warning for unused

variables and the generated OCaml code generated by FoCaLiZe will not change unused variables into

“ ”s.

Patterns also allow to match record values (cf. 3.2.5.11), i.e. to match on values of the fields:

type t = { name : string ; birth : int } ;;

let r = ... in

let x =

match r with

| { name = "Alexandre" } -> ...

| { name = n ; birth = 2003 } -> ...

| { name = n } -> ...

In such a pattern, fields not specified are considered as “catch-all” patterns. Hence, the last case catches

all the record values not caught before since the field name’s value is bound to a variable (so, any value can

match it) and the field birth is absent (so, considered as birth =).

3.2.5.9 Application expression

We previously saw that the let-in construct allow for the definition of functions by binding an identifier

to a functional value. Using a function by providing it with effective arguments to get its result value is

called application. Hence, in an application there are 2 distinct parts: the applicative part that must be

an expression leading to a functional value and the effective arguments that are expressions whose values

will be provided to the function to make its computation. The syntax for application is simply the juxtapo-

sition of the applicative expression and the comma-separated expressions used as arguments embraced by

parentheses:

let f (x) = ... in

let g (x, y) = ... f (y) ... in

g (f (3), 4)

...

As described in 3.2.5.3, the evaluation of an application of a function to its effective arguments start by

the evaluation of these arguments (the order of the evaluation of several arguments is left unspecified). Then

these effective values are substituted to the corresponding parameters inside the body of the function and

the so-obtained expression (the substituted body) is evaluated. For instance, having the following function

and application:

let g (x, y) = (y, x) in

g (true, 1)

The evaluation of the let-in expression first binds the identifier g to a functional value also called

closure. Then the application expression g (true, 1) is evaluated. So the values of g and of the

expression (true,1) are elaborated: the evaluation of g returns a closure, true is evaluated into the

52

boolean value true, 1 into the integer value 1. The next step is to evaluate the body of the closure of

g, replacing the formal parameter x by the effective argument true and y by 1. The body of g creates a

tuple from its 2 arguments, putting y in the first component and x in the second. Hence, the result of the

application is the tuple value (1, true).

3.2.5.10 Operator application expression

Since operators are designed to be used in infix or prefix position, application of operators consists simply

in providing arguments according to the operator infix/prefix nature. For infix operators, arguments are on

left and right sides. For prefix operators, the operator is in front of the argument expression.

3.2.5.11 Record expression

As stated in 3.2.1.3, record types are defined by a list of labels with their types. As usual a record expression

follows the same structure, replacing the type expressions of the definition by values of these types. For

instance, assuming the given record type definition, the following example shows a possible record value:

type identity = {

name : string ;

birth : int ;

living : bool

} ;;

...

{ name = "Nobody" ; birth = 42 ; living = false }

...

If the record type definition is in a different compilation unit, you may qualify the record fields by the

“#” notation:

{ my_file#name = "Nobody" ; my_file#birth = 42 ; my_file#living = false }

3.2.5.12 Cloning a record expression

It is sometimes needed to create a new value of a record type by modifying a few fields of an existing record,

leaving the other fields unchanged. If the record type definition contains numerous fields, manually copying

the old fields values to create the new record value appears boring and error prone:

type t = { a : int ; b : int ; c : int ; d : int ; e : int ; f : int } ;;

...

let v1 = { a = 1 ; b = 2 ; c = 3 d = 4 ; e = 5 ; f = 6 } in

...

let v2 = {

a = v1.a ; b = v1.b ;

c = 5 ; (* Changed value. *)

d = v1.c ; (* an error since the requested value was "v1.d". *)

e = 6 ; (* Changed value. *)

f = v1.f } in

...

Instead of manually copy the unchanged fields, FoCaLiZe provides a way to clone a record value, that

is to create a new, a fresh value from an existing one, only by specifying the fields whose values differ from

the old record value:

53

type t = ... (* Like above. *)

let v1 = ... (* Like above. *)

...

let v2 = { v1 with c = 5 ; e = 6 } in

...

As for other record value expressions, if the record type definition is in a different compilation unit, you

may qualify the record fields by the “#” notation.

3.2.5.13 Record field access expression

Once a record value is created by aggregating values of its fields, it is possible to recover the value of one

field by a dot notation. For instance, assuming the type definition and record values of the previous example:

... v1.a ...

... v2.c ...

respectively get the value of the fields a of v1 and c of v2, that is, 1 and 5. If the record type definition is

in a different compilation unit, you may qualify the record fields by the “#” notation: t1.my source#a.

3.2.5.14 Parenthesised expression

The parentheses can be used around any expression, to enforce the associativity or evaluation order of

expressions. Simple expressions (i.e. atomic) can also be parenthesised without changing their values.

3.2.6 Core language expressions and definitions

In the previous sections, we described the syntax of expressions. Expressions rarely appear outside any

definition but it is still possible to have top-level expressions. They will be directly evaluated and not bound

to any identifier, but this implies that these expressions use previously written definitions.

As further explained in (cf. 4.1.2) species are made of methods. Some methods contain expressions

(functions, properties, theorems). Function-methods are introduced by the let keyword, using the same

syntax (hence expressions) that the let-in construct except the fact they do not have a “in” expression.

The idea is that the “in” expression is implicitly the remaining of the species. Properties and theorems

are respectively introduced by the keywords property and theorem and may contain expressions. The

section 3.2.8 is dedicated to their detailed explanation.

open "basics" ;;

species My_Setoid inherits Basic_object =

signature (=) : Self -> Self -> bool ;

signature element : Self ;

let different (x, y) = basics#not_b (x = y) ;

property refl : all x in Self, x = x ;

property symm : all x y in Self, Self!(=) (x, y) -> y = x ;

end ;;

Toplevel-definitions are definitions introduced outside of any species. General functions and general

theorems, i.e. that do not depend on a particular species can be introduced as toplevel-definitions. Toplevel-

functions are introduced by the let keyword and don’t have a “in” expression, this part being implicitly the

remaining of the program (i.e. the current compilation unit and those using the current). Toplevel-theorems

are introduced by the theorem keyword. These definitions must be ended by a double semi (“;;”).

54

let is_failed (x) =

match x with

| Failed -> true

| Unfailed (_) -> false

;;

theorem int_plus_minus: all x y z in int,

(* x + y = z -> y = z - x *)

#base_eq (#int_plus (x, y), z) -> #base_eq (y, #int_minus (z, x))

proof =

coq proof {*
intros x y z;

unfold int_plus, int_minus, base_eq, syntactic_equal in |- *;

intros H;

unfold bi__int_minus;

apply EQ_base_eq; apply Zplus_minus_eq;

symmetry in |- *;

apply (decidable _ _ _ (Z_eq_dec (x + y) z) H).

Qed.

*}

;;

3.2.7 Files and uses directives

FoCaLiZe provides 3 directives that are not expressions. This means that they do not lead to values or

computation.

All these directives deal with searching for files in the available search paths. The path of the compilation

unit is never specified since it is always searched first. Hence, the file will be searched first in the local

directory, then in the stardard library directory and finally in the library search path specified with the -I

option (cf. 7).

Note that if several files at different locations have the same name, the directives will use the first fiound

in the search path set in the compilation command-line.

3.2.7.1 The use directive

This directive is followed by the name of the file to open between double quotes without the “.fo” extension

(compiled version of a “.fcl”). Before being allowed to use the qualified notation for an identifier, (i.e. the

“#”-notation), the qualifying compilation must be declared with a directive use. In other terms, “using” a

compilation units allows to access its entities from the current compilation unit.

3.2.7.2 The open directive

This directive is followed by the name of the file to open between double quotes without the “.fcl” extension.

As previously introduced (cf. 3.2.5.3 and 3.1.13) the open directive loads in the current name resolution

(scoping) environment the definitions of the compilation unit named in the open directive. This prevents

the user from having to explicitly qualify definitions of this unit by the “#” notation. Definitions imported

by the directive hide (“mask”) those wearing the same name already defined in the current compilation unit

from the point the directive appears. Remember that it is however possible to recover the hidden definitions,

using the “#” notation without compilation unit name.

Note that the open directive implicitly implies the use directive. This means that it is not useful to add

a use together with an open directive.

55

open "sets";;

This directive loads the definitions of the compilation unit “sets.fo” in the current name resolution (scop-

ing) environment.

3.2.7.3 The coq require directive

Some source files of a development may be directly written in Coq to provide external definitions (de-

tailed further in 9.0.1) to import and use in the FoCaLiZe source code. In this case, the Coq code gen-

erated for the FoCaLiZe source code must be aware of the need to import the external definitions from

the manually written Coq file. For this reason, the FoCaLiZe source must explicitly indicate by the

coq require directive that it makes references to definitions hosted in this Coq source file. For ex-

ample, the file “wellfounded.fcl” of the standard library needs “wellfounded externals.vo” (the compiled

version of “wellfounded externals.v”) and signals this fact in its early lines of code:

...

open "basics";;

open "sets_orders";;

coq_require "wellfounded_externals";;

...

3.2.8 Properties, theorems and proofs

Properties are first order logic propositions and theorems are properties with their proofs. We will study

here first the structure of logical expressions used to express the statements, show properties and theorems

forms and shortly present the 3 available ways to write proofs.

3.2.8.1 Logical expressions

Logical expressions are those used to write first order logic formulas.

logical-exp ::= all {lident}+ in type-exp , logical-exp

| ex {lident}+ in type-exp , logical-exp

| logical-exp -> logical-exp

| logical-exp <-> logical-exp

| logical-exp /\ logical-exp

| logical-exp \/ logical-exp

| ˜ logical-exp

| exp

| (logical-exp)

Logical expressions contain the usual logical connectors “imply” (⇒), “and” (∧), “or” (∨), “there exists”

(∃), “for all” (∀), “is equivalent” (⇔) and “not” (¬). Moreover, logical expressions embed the FoCaLiZe

expressions used in computational methods (i.e. identifiers, conditionals, application, . . .). This allows to

have connected propositions using the previously defined functions and species methods.

species S ... =

signature gt : Self -> Self -> bool ; (* Greater than... *)

signature geq : Self -> Self -> bool ; (* Greater or equal... *)

56

signature equal : Self -> Self -> bool ; (* Equal to... *)

signature different : Self -> Self -> bool ; (* Different of... *)

property gt_is_lt : all x y in Self,

(!gt (x, y) -> (!geq (x, y) /\ !different(x, y)))

/\

(!geq (x, y) -> (!gt (x, y) \/ !equal(x, y))) ;

end ;;

Since propositions in logical expressions are truth values, this obviously imply that the arbitrary expres-

sions used between connectors must have type bool.

3.2.8.2 Properties

A property is a logical expression bound to an identifier. Its form is the name of the property, a colon

character (“:”) and the logical expression being its statement. See the example given in 3.2.8.1.

property ::= property lident : logical-exp

3.2.8.3 Proofs

FoCaLiZe currently provides 3 ways to write proofs. We only give here a simple description of these 3

means without going deeply in the technical mechanisms since this problem will be especially addressed in

section 5 and 9.0.2.

• Consider the proof as “assumed”. This way is the simplest but also the weakest one since it consists

in saying that no proof is given and the system must accept the statement as an axiom.

species S =

representation = int;

let equal = (=Ox);

theorem symmetry : all x y in Self, equal (x, y) -> equal (y, x)

proof = assumed

(* Machine integers equality admitted to be symmetric *) ;

...

end ;;

Although such a proof can introduce inconsistencies if the “theorem” is not a tautology and thus

decrease confidence in the correctness of the FoCaLiZe program, there are several cases where using

this keyword may help.

– The first case is simply that the developer doesn’t know (yet ?) how to make the proof, doesn’t

have time yet to write it, or is not interested in proofs but still wants his program to compile to

get the executable code.

– Second case deals with import of external code, i.e. code not written in FoCaLiZe and con-

sidered as external. In this case, since the imported code does not fit the FoCaLiZe model and

more accurately, does not have formal properties, it is impossible to make any proof on FoCaL-

iZe’s side based on the structure of this code and its non-existing implementation properties. In

other terms, things coming outside FoCaLiZe universe can not be modeled by FoCaLiZe. The

developer can only import them providing a binding is given and must trust them.

57

– Last case addresses “well-known” mathematical properties that do not actually hold in comput-

ers since they are finite machines, working on bounded arithmetics. The most obvious example

is the fact that since an integer is coded on a machine word (e.g. 32-bit values), the mathematical

property ∀x ∈ N, x+ 1 > x does not hold anymore.

However, conceptually, except when dealing with boundaries, this property holds and we need

to achieve further proofs. For this reason, assuming that the proof holds is legitimate, if the

developer is able to guarantee that the integer computations never overflow. If he cannot guar-

antee non-overflow, then this is a true problem of specification or design which should be re-

considered.

In any case, we advice the reader to use the test tool (or another mean) to comfort the confidence in

the statement of the theorem, when such statement is admitted.

• Write an automated proof script. FoCaLiZe provides a syntax, the FoCaLiZe Proof Language,

to split proofs into steps that may be proved by the theorem prover. Without entering deeply into

the syntax further described in chapter 5, the main features are the following. The user may state

hypotheses, demonstrate subgoals that will serve as lemmas for a higher level goal and may give hints

about definitions or declarations of methods. Then the prover tries to automatically guess a proof of

this goal, then tries to prove those lemmas, hence building a proof tree until the top goal (i.e. the

theorem) is proved. Here is an example of such a proof.

theorem zero_is_unique : all o in Self,

(all x in Self, !equal (x, !plus (x, o))) -> !equal (o, !zero)

proof =

<1>1 assume o in Self,

assume H1: all x in Self, !equal (x, !plus (x, o)),

prove !equal (o, !zero)

<2>1 prove !equal (!zero, !plus (!zero, o))

by hypothesis H1

<2>3 prove !equal (o, !zero)

by step <2>1

property zero_is_neutral, equal_transitive, equal_symmetric

<2>4 conclude

<1>2 conclude

;

• Write a Coq or Dedukti script This way is the most difficult since it means to directly write Coq or

Dedukti code. It requires the understanding of both the proof checker and the mapping the FoCaL-

iZe compiler does to generate Coq/Dedukti code from FoCaLiZe source code. The section 9.0.2

describes how FoCaLiZe definitions are mapped onto Coq and Dedukti names.

The script is introduced by the keywords coq proof or dedukti proof and surrounded by {*
and *}. Below follows an example of such a proof.

theorem int_minus_plus: all x y z in int,

(* x - y = z -> x = y + z *)

#base_eq (#int_minus (x, y), z) -> #base_eq (x, #int_plus (y, z))

proof =

coq proof {*
intros x y z; unfold int_plus, int_minus, base_eq,

syntactic_equal in |- *;

intros H;

unfold bi__int_minus;

apply EQ_base_eq; rewrite <- (Zplus_minus y x);

apply Zplus_eq_compat; trivial; apply decidable.

apply Z_eq_dec. assumption.

Qed.

58

*} ;;

3.2.8.4 Theorems

Now we know how to write a logical statement and how to write a proof, the structure of a theorem ap-

pears simple since it contains both the statement and the proof inside the same construct. The theorem is

introduced by the keyword theorem and the proof by the keyword proof followed by an equal character

(“=”).

theorem ::= theorem lident : logical-exp proof = proof

For instance:

species Meet_semi_lattice inherits Setoid =

...

theorem inf_right_substitution_rule : all x y z in Self,

equal(y, z) -> equal(!inf(x, y), !inf(x, z))

proof =

by property

inf_left_substitution_rule,

inf_commutes,

equal_transitive ;

...

end ;;

The kind of proof used here is written in FoCaLiZe Proof Language and must not be a matter of under-

standing at this point since this particular point will be addressed with more details in chapter 5.

Notice that theorems can be hosted in a species or can be toplevel-theorems. Unlike theorems, properties

cannot appear at toplevel since there is no way to inherit at toplevel, hence no way to give a proof after the

property declaration in a “parent”.

59

Chapter 4

The FoCaLiZe model

As stated in section 1, the FoCaLiZe language is designed to build an application step by step, going from

very abstract specifications to the concrete implementation through a hierarchy of structures. At first sight

species seem quite similar to classes in an Object-Oriented context. However, despite of inheritance and

late-binding features, FoCaLiZe is definitively not an Object-Oriented language as C++, Java, etc. are.

In the following we focus on the basic concepts underlying a FoCaLiZe development, that is:

• Top-level definitions

• Species

• Collections

• Parametrisation

• Inheritance

• Late-binding

To ensure that this part can be read independently of the section 1, we duplicate some explanations.

4.1 Basic concepts

4.1.1 Top-level Definitions

We call toplevel-definition (just one word) a definition which appears outside species and collections. Such

definitions can only be:

• Species

• collections,

• type definitions,

• general theorems (not depending on a species)

• general functions (not depending on a species),

• expressions to be directly evaluated (but there is no way to bind their value to an identifier).

Any toplevel-definition is terminated by a double semi-character (“;;”).

60

4.1.2 Species

Species are the nodes of the FoCaLiZe hierarchy. A species is a sequence of methods or fields, each one
being terminated by a semi character (“;”). Hence, a basic species looks like:

species Name =

meth1 ;

meth2 ;

end ;;

Species names are always capitalised. As any toplevel-definition, a species ends with a double semi-

character (“;;”). There are several kinds of methods:

• The representation. It defines the type of the entities manipulated in the species and is a kind of alias

type (see section 3.2.4). The representation can be a type variable and then is said to be “not yet de-

fined” or “only declared” and is not explicitly introduced . It can be bound to a type defined by a more

complex type expression possibly containing type variables (introduced via collection parameters).

Either, this type value is obtained by inheritance or is introduced by the keyword representation

followed by = followed by a type expression. Ultimately to get a complete (fully defined) species, the

representation must be a fully instantiated type (directly or by 4.3.1).

In the context of a species, the representation is denoted by Self.

Note that a representation is never a polymorphic type. When it is only declared, it is a type vari-

able, which can receive only one instantiation. In other words, this type variable is not universally

quantified, as are the type variables of polymorphic types.
• Signatures. They introduce names of constants and functions, uniquely providing their type as a

type expression. A signature begins with the keyword signature followed by the introduced name
followed by : followed by a type expression. For instance:

species IntStack =

signature push : int -> Self -> Self ;

end ;;

As we saw above, Self represents the representation (thus a type) of the current species. Hence an

operation pushing an integer onto a stack takes as parameter the integer to push, the stack on which to

push and give back a new stack, that is, an entity of type Self.

• Functions. They are implementations of signatures, providing effective code. A function is intro-

duced by the let keyword followed by the name followed by = followed by a definition, which

is similar to ML definitions. Recursive functions are introduced by let rec to make explicit the

recursivity.

species IntStack =

representation = int list ;

let push (v in int, s in Self) = v :: s ;

end ;;

Function parameters can be entities (that is, values) of the species itself (which type is the representa-

tion, thus denoted by Self), entities of known collections, values of known types.

Functions can use in their body other methods of the species, toplevel-definitions of functions, meth-

ods of collections (described further in 4.1.5), or methods of collections parameters (see 4.2.1).

When we say “other methods of the species”, this includes functions only introduced by their signa-

tures. This means that it is possible to use something only declared, without yet effective implemen-

tation. We will address this point later in detail in section 4.4.1.

61

Although FoCaLiZe is a functional language, function application must always be total. This means

that any function call must be provided all the effective arguments of the function. As previously

described in the core syntax (cf. 3.2.5.9), function application is “à la C”, that is with arguments

comma separated and enclosed by parentheses.

• Properties. They are first order formulae containing names already introduced. When stating a

property, the proof that it holds is not yet provided (but will have to be ultimately provided). A

property can be viewed as a declaration.

species IntStack =

...

property push_returns_non_empty :

all v in int, all s in Self, push (v, s) -> ˜ is_empty (s) ;

end ;;

Proofs of properties can be delayed, that is, done afterwards using a proof field in a species. The

way to give proofs will be seen further.

species IntStack2 =

inherit IntStack;

proof of push_returns_non_empty = ... ;

end ;;

• Theorems. They are properties with their proofs. In fact, when defining a property, we only give the

statement of a theorem, leaving its proof for later. A theorem can be viewed as a definition.

species IntStack =

...

theorem push_returns_non_empty :

all v in int, all s in Self, push (v, s) -> ˜ is_empty

(s)

proof = ... ;

end ;;

One important restriction on the type of the methods is that it cannot be polymorphic. However, Fo-

CaLiZe provides another mechanism to circumvent this restriction, the parametrisation as explained further

(cf. 4.2).

4.1.3 Complete species

A species is said complete if all its methods are defined, i.e. have an implementation. In other words this

means that there is no more methods only declared. This notion implies that:

• The representation has been associated with a type definition.

• Every declaration is associated to a definition.

• A proof is given for every property.

Obviously, it is possible to build a species without signatures and properties, only providing functions

and theorems directly. In this case, if the representation is also defined, then the obtained species is trivially

complete.

The important point for a species to be complete is that it can be turned into effective executable OCaml

code and effective checkable Coq and Dedukti code, since all the components are known.

62

Important: Although we said that only a complete species can lead to effective executable code, of

course species even not complete are compiled ! This means that you do not need to have a complete

species to compile your source code ! It is very common to have species not complete in source files since

programs are written in a modular fashion, in several files. Moreover, a library may provide species with

methods not defined, leaving the user the freedom to chose an effective implementation for some algorithms.

4.1.4 Interfaces

The interface of a species is the list of the declarations of its methods. It corresponds to the end-user point

of view, who wants to know which functions he can use, and which properties these functions have, but

doesn’t care about the details of the implementation.

The interface of a species is obtained by keeping the signatures and properties and retaining only the

signatures of the let methods and the statement of the theorems. The representation is hidden thus abstract

(only unifiable with itself). Hence, getting the interface of a species can roughly be seen as erasing the

representation, turning the functions into signatures and the theorems into properties.

While this abstraction is easy within programming languages, it is not always possible when dealing

with proofs and properties. Such problematic species are rejected by FoCaLiZe and will be described later

in 4.4.2.

An interface has a name, which is the name of the underlying species. There should be no confusion

between species names and interface names as interface names are only used to declare formal collection

parameters (see section 4.2.1) and to apply methods of collection parameters.

4.1.5 Collections

A collection is a kind of “grey box”, built from a complete species by abstraction of the representation.

A collection has exactly the same sequence of methods than the complete species underlying it, apart the

representation which is hidden. Note that creating a collection from it is the only way to turn methods of a

complete species into executable code. This point is emphasised by the syntax:

collection name-collection = implement name-species ; end

The interface of a collection is the one of the complete species it implements. The interface I1 of a

collection C1 is compatible with an interface I2 if I1 contains all the components of I2.

Thus, implementing a complete species creates a collection, which is a kind of abstract data-type. This

especially means that entities of the collection cannot be directly created or manipulated as their type is not

accessible. So they can only be manipulated by the methods of the implemented species.

species Full =

rep = int ;

let create_random : Self = random_foc#random_int (42) ;

let double (x : Self) : Self = x + x ;

let print (x : Self) = print_int (x) ;

end ;;

collection MyFull_Instance =

implement Full;

end ;;

let v = MyFull_Instance!create_random ;;

MyFull_Instance!print (v) ;;

let dv = MyFull_Instance!double (v) ;;

MyFull_Instance!print (dv) ;;

63

In this example, we define a complete species Full. Then we create the collection MyFull Instance.

And we use methods of this collection to create entities of this collection. We print the result of the evalua-

tion of the top-level definitions of v and dv.

Note that two collections created from a same species are not type-compatible since their representation

is abstracted making impossible to ensure a type equivalence.

As a conclusion, collections are the only way to get something that can be executed since they are the

terminal items of a FoCaLiZe development hierarchy. Since they are “terminal”, this also means that no

method can be added to a collection. Moreover, a collection may not be used to create a new species by

inheritance (as explained in the next section).

4.2 Parametrisation

This section describes a first mechanism to incrementally build new species from existing ones: the parametri-

sation.

4.2.1 Collection parameters

Remember that methods cannot be polymorphic (cf. 4.1.2). For example, how to implement the well-known

polymorphic type of lists ? Grouping elements in a list does not depend of the type of these elements. The

only constraint is that all elements must have the same type. Hence, a ML-like representation of lists would

be like:

type ’a list =

| Nil

| Cons of (’a * ’a list)

The ’a is a parameter of the constructor type list, which is indeed a polymorphic ML type.

In FoCaLiZe we would like to create a species looking like:

species List =

signature nil : Self ;

signature cons : ’a -> Self -> Self ;

end ;;

Instead of abstracting the type parameter and leaving it free in the context of the species, in FoCaLiZe

we parametrise the species by a collection parameter, the parameter named Elem in the example:

species List (Elem is Basic_object) =

signature nil : Self ;

signature cons : Elem -> Self -> Self ;

end ;;

The collection parameters are introduced by their name, followed by the is keyword, followed by an

interface name (remember that an interface has the same name as its underlying species). In the example,

Basic object is a pre-defined species from the standard library, containing only few methods and this

name is used here to denote the interface of this species. A collection parameter can be instantiated by any

collection which interface is compatible with the one required by the parametrised species (cf. 4.1.4). In

the example, any effective parameter instantiating Elem is a collection which interface contains at least the

methods listed in the interface of Basic object.

64

In the example, we use the parameter Elem to build the signature of the method cons. Note that

collection names can be used in type expressions to denote the “abstracted” representation of the collection.

Here “abstracted” means that the representation is not visible but we can refer to it as an abstract type. In

other words, Elem -> Self -> Self stands for the type of a function:

• taking a first argument whose type is the representation of a collection having a compatible interface

with the interface Basic object. (This especially means that such an argument is created using

methods of the compatible collection),

• taking a second argument whose type is the representation of the current species,

• and returning a value whose type is the representation of the current species.

Why a collection parameter and not a species parameter?

The answer to this question is especially important to understand the programming model in FoCaLiZe.

It is a collection parameter because ultimately, at the terminal nodes of the development, this parameter

will have to be instantiated by an entity where everything is defined, so at least a complete species. Imagine

how to build an executable code if a parameter can be instantiated by a species with some methods only

declared. . . This is the first reason.

Remember that properties mentioned in the collection interface have been proved in the underlying

complete species. Indeed in the hosting species, these theorems can be used as lemmas to do current proofs.

If the collection representation was not abstracted, then some methods of the hosting species would have the

ability to directly manipulate entities of the collection parameter, with the risk of breaking some invariants

of the collection parameter. This is the second reason. Thus the representation of a collection parameter is

abstract for the hosting, exactly as is the representation of a collection (cf. 4.1.5).

To summarize, declaring a collection parameter for a parametrised species means providing two things:

the (capitalized) name of the parameter and the interface (denoted by a species name) that the instantiation

of this parameter must satisfy.

It is important at this point to note that FoCaLiZe deals with dependent types, and therefore that the or-

der of the parameters is important. To define the type of a parameter, one can use the preceding parameters.

For instance, assuming that a parametrised species List declares the basic operations over lists, one can

specify a new species working on couples of respectively values and lists of values like:

species MyCouple (E is Basic_object, L is List (E)) =

representation = (E * L) ;

... ;

end ;;

The representation of this species represents the type (’a * (’a list)). This means that the type

of the values in the first component of the couple is the same than the type of the elements of the list in the

second component of the couple.

A parametrized species (like MyCouple in the example) cannot be only partially instantiated. An

instantiation for all its parameters is required.

The previous example used a parameter to build the representation of the species. Collection parameters

can also be used via their other methods, i.e. signatures, functions, properties and theorems, denoted by the

parameter’s name followed by the “!” character followed by the method name.

To create a species describing a notion of generic couple, it suffices to use two collection parameters,

one for each component of the couple. To define a printing (i.e. returning a string, not making side effect

in our example) method, it suffices to require each collection parameter to provide one. Now the printing

65

method has only to add parentheses and comma around and between what is printed by each parameter’s

printing routine.

(* Minimal species requirement : having a print routine. *)

species Base_obj =

signature print : Self -> string ;

end ;;

species Couple (C1 is Base_obj, c2 is Base_obj) =

representation = (C1 * C2) ;

let print (c in Self) =

match (c) with

| (component1, component2) ->

"(" ˆ C1!print (component1) ˆ

", " ˆ

C2!print (component2) ˆ")" ;

end ;;

Hence, C1!print (component1) means “call the collection C1’s method print with the argu-

ment component1”.

The qualification mechanism using “!” is general and can be used to denote the method of any available

species/collection, even those of species being defined (i.e. Self). Hence, in a species instead of calling:

species Foo ... =

let m1 (...) = ... ;

let m2 (...) = if ... then ... else m1 (...) ;

end ;;

it is allowed to explicitly qualify the call to m1 by “!” with no species name, hence implicitly telling

“from myself”:

species Foo ... =

let m1 (...) = ... ;

let m2 (...) = if ... then ... else !m1 (...) ;

end ;;

In fact, without explicit “!”, the FoCaLiZe compiler performs the name resolution itself, allowing a

lighter way of writing programs instead of always needing a “!” character before each method call.

4.2.2 Entity parameters

There is a second kind of parameter: the entity-parameter. Such a parameter can be instantiated by an

entity of a certain collection.

For example, to obtain a species offering addition modulo an integer value, we need to parametrise it

by an entity of a collection implementing the integers and to give a way to build an entity representing the

value of the modulo. Such a parameter is called an entity parameter and is introduced by the keyword in.

species AddModN (Number is InterfaceForInts, val_mod in Number) =

representation = Number ;

let add (x in Self, y in Self) =

Number!modulo (Number!add (x, y), val_mod) ;

end ;;

species

Hence, any collection created from AddModN embeds the addition modulo the effective value instan-

tiating val mod. It is then possible to create various collections with each a specific modulo value. For

66

instance, assuming that the species AddModN is complete and have a method from int able to create a

value of the representation from an integer, we can create a collection implementing addition modulo 42. We

also assume that we have a collection ACollImplentingInts having at least InterfaceForInts

as interface.

collection AddMod42 =

implement

AddModN

(ACollImplentingInts,

ACollImplentingInts!from_int (42));

end ;;

Currently, entity parameters must live “in” a collection. It is not allowed to specify an entity parameter

living in a basic type like int, string, bool. . . This especially means that these basic types must be

embedded in a collection if we want to use their values as entity parameters.

4.3 Inheritance and its mechanisms

We now address the second mechanism to build complex species based on existing ones. It will cover the

notion of inheritance and its related feature, the late-binding.

4.3.1 Inheritance

FoCaLiZe inheritance is the ability to create a species, not from scratch, but by integrating methods of other

species. The inheritance mechanism also allows to redefine methods already existing as long as they keep

the same type expression. For theorems to have the same type is simply to have the same statement (but

proofs can differ).

During inheritance, it is also possible to replace a signature by an effective definition, to redefine a

property by a theorem and in the same idea, to add a proof of to a property in order to conceptually

redefine it as a theorem. Moreover new methods can be added to the inheriting species.

Since inherited methods are owned by the species that inherits, they are called exactly like if they were

defined “from scratch” in the species.

For instance, assuming we have a species IntCouple that represent couples of integers, we want

to create a species OrderedIntCouple in which we ensure that the first component of the couple is

lower or equal to the second. Instead of inventing again all the species, we will take advantage of the

existing IntCouple and “import” all its methods. However, we will have to change the creation func-

tion since it must ensure at creation-time of a couple (so at run-time) that it is indeed properly ordered.

OrderedIntCouple has all the methods of IntCouple, except create which is redefined and the

property is ordered that states that the couple is really ordered.

species IntCouple =

representation = (int * int) ;

let print (x in Self) = ... ;

let create (x in int, y in int) = (x, y) ;

let first (c1, c2) = c1 ;

...

end ;;

species OrderedIntCouple =

inherit IntCouple;

let create (x in int, y in int) =

67

if x < y then (x, y) else (y, x) ;

property is_ordered : all c in Self, first (c) <= scnd (c) ;

end ;;

Multiple inheritance, i.e. inheriting from several species is allowed by specifying several species sep-

arated by comma in the inherit clause. The inheriting species inherits of all the methods of inherited

species. When a name appears more than once in the inherited species, the compiler proceeds as follows.

If all the inherited species have only declared representations, then the representation of the inheriting

species is only declared, unless it is defined in this inheriting species. If some representations are declared,

the other ones being defined, then the totally defined representations of inherited species must be the same

and this is also the one of the inheriting species. In the following example, species S3 will be rejected while

species S4 has int as representation.

species S0; -- no defined representation

end;;

species S1 =

representation = int ; .. end ;;

species S2 =

representation = bool; ... end;;

species S3 = inherit S1, S2; ... end;;

species S4 = inherit S0, S1; ... end;;

If some methods of inherited species have the same name, if they are all signatures or properties, if

these species have no parameters, then signatures and properties must be identical. If some of these methods

have already received a definition and if they have the same type, then the definition which is retained for

the inheriting species is the one coming from the rightmost defining parent in the inherit clause. For

instance below, if species A, B and C provide a method m which is defined in A and B but only declared in C,

then B!m is the method inherited in Foo.

species Foo = inherit A, B, C, D;

... m (...) ... ;

end ;;

Inheritance and parametrisation If a species S1 inherits from a parametrised species S0, it must instanti-

ate all the parameters of S0. Due to the dependent types framework, if S1 is itself parametrised, it can use

its own parameters to do that.

Assume we have a species List parametrised by a collection parameter representing the kind of ele-

ments of the list. We want to derive a species ListUnique in which elements are present at most once.

We build ListUnique by inheriting from List.

species List (Elem is ...) =

representation = Elem list;

let empty = ... ;

let add (e in Elem, l in Self) = ... ;

let concat (l1 in Self, l2 in Self) = ... ;

end ;;

species ListUnique (UElem is ...) =

inherit List (UElem);

let add (e in UElem, l in Self) =

... (* Ensure the element e is not already present. *) ;

let concat (l1 in Self, l2 in Self) =

... (* Ensure elements of l1 present in l2 are not added. *) ;

end ;;

68

UElem is a formal collection parameter of ListUnique which acts as an effective collection pa-

rameter in the expression ListUnique. The representation of ListUnique is UElem list. The

representation of UElem is hidden: it denotes a collection. But, the value constructors of the type list are

available, for instance, for pattern-matching.

As a consequence, if two methods in inherited species have the same name and if at least one of them

is itself a parametrised one, then the signatures of these methods are no longer required to be identical but

their type must have a common instance after instanciation of the collection parameters.

Species inheriting species parametrised by Self A species can also inherit from a species parametrised

by itself (i.e. by Self). Although this is rather tricky programming, the standard library of FoCaLiZe

shows such an example in the file weak structures.fcl in the species Commutative semi ring. Indeed

this species specifies the fact that a commutative semi-ring is a semi-ring on itself (as a semi-ring of scalars).

In such a case, this implies that the current species must finally (when inheritance is resolved) have an

interface compatible with the interface required by the collection parameter of the inherited species. The

FoCaLiZe compiler collects the parts of the interface of Self obtained either by inheritance or directly in

the species body. Then it checks that the obtained interface is indeed compatible with the required interfaces

of the parametrised inherited species. if so, the compiler is able to build the new species. Thus the compiler

tries to build a kind of fix-point but this process is always terminating, issuing either the new species or

rejecting it in case of interface non-compliance.

4.3.2 Species expressions

We summarize the different ways of building species. The first way is to introduce a simple collection

parameter, requiring that the effective parameter can offer all the methods listed in the associated interface.

species List (Elem is Basic_object) = ... ;

Then, we can iterate the process and build a species parametrised by a parametrised species, like in the

example:

species MyCouple (E is Basic_object, L is List (E)) = ... ;;

Going on, we can inherit from species that are referenced only by their name, like in:

species OrderedIntCouple = inherit IntCouple; ... ;;

And finally, we mix the two possibilities, building a species by inheritance of a parametrised species,

like in:

species ListUnique (UElem is ...) = inherit List (UElem); ... ;;

Hence, we can now define more accurately the notion of species expression used for both inheritance

and parametrisation. It is either a simple species name or the application of a parametrised species to as

many collection expressions as the parametrised species has parameters.

4.4 Late-binding and dependencies

4.4.1 Late-binding

When building by multiple inheritance (cf. 4.3.1) some signatures can be replaced by functions and proper-

ties by theorems. It is also possible to associate a definition of function to a signature (cf. 4.1.2)or a proof

69

to a property. In the same order, it is possible to redefine a method even if it is already used by an existing

method. All these features are relevant of a mechanism known as late-binding.

During compilation, the selected method is always the most recently defined along the inheritance tree.

This especially means that as long as a method is a signature, in the children the effective implementation of

the method will remain undefined (that is not a problem since in this case the species is not complete, hence

cannot lead to a collection, i.e. code that can really be executed yet). Moreover, if a method m previously

defined in the inheritance tree uses a method n freshly redefined, then this fresh redefinition of n will be

used in the method m.

This mechanism enables two programming features:

• The mean to use a method known by its type (i.e. its prototype in term of Software Engineering), but

for which we do not know, or we don’t need or we don’t want yet to provide an implementation.

• To provide a new implementation of a method while keeping the initial implementation for the inher-

ited species. For example, the inheriting species can provide some new information (representation,

functions, ..) which allow a more efficient implementation of a given function.

4.4.2 Dependencies and erasing

We previously saw that methods of a species can use other methods of this species and methods from its

collection parameters. This induce what we call dependencies. There are two kinds of dependencies,

depending on their nature:

• Decl-dependencies

• Def-dependencies

In order to understand the difference between, we must inspect further the notion of representation, function,

and theorem.

4.4.2.1 Decl-dependencies

When defining a function, a property or a theorem it is possible to use another functions or signatures. For

instance:

species Bla =

signature test : Self -> bool ;

let f1 (x in string) = ... ;

let f2 (y in Self) = ... f1 ("Eat at Joe’s") ... ;

property p1 : all x in Self, test (f2 (x)) <-> test (f1 ("So what")) ;

theorem t1 : all x in Self, p1 <-> test (f1 ("Bar"))

proof = ... ;

end ;;

In this cases, knowing the type (or the logical statement) of the used methods is sufficient to ensure that

the using method is well-formed. The type of a method being provided by its declaration, we will call these

induced dependencies decl-dependencies.

Such dependencies also arise on the representation as soon as the type of a method makes reference to

the type Self. Hence we can have dependencies on the representation as well as on other methods.

Hence, in our example, test, f2, f1 (since it is used in p1 and t1 as the argument of test which

expects an argument of type Self), p1 and t1 have a decl-dependency on the representation. Moreover,

f2 has one on f1. The property p1 has decl-dependencies on test, f1 and f2 and Self. And finally t1

decl-depends on p1, test, f1 and Self.

70

4.4.2.2 Def-dependencies

A method m has a def-dependency over another one p if the system needs to know the definition of p to

ensure that m is well-formed.

A definition of function can create only decl-dependencies on methods differing from the representa-

tion since the type system of FoCaLiZe only needs the types of the names present in the body of this

function. Note also that when using a signature in another method, since signature only contain types, no

def-dependencies can arise.

Now remember that representation is also a method and there is no syntactical way to forbid

constructions like if representation = int .. in function or properties. Such definitions would

have a def-dependency on the representation. For consistency reasons going beyond the scope of this

manual but that will be shortly presented below in 4.4.3.2, the FoCaLiZe system rejects functions and

properties having def-dependencies on the representation.

There remains the case of theorems. This case is the most complex since it can lead to def-dependencies

in proofs. For the same reasons as for properties, the FoCaLiZe system rejects theorems whose statements

have def-dependencies on the representation. Other def-dependencies are accepted. These dependencies

must be introduced by the statement of the proof (with a syntax given in section 5.1). Now, what does mean

for a theorem to def-depend on a method ? This basically means that to make the proof of the theorem

statement, one must use not only the declaration of a method, but also its definition, its body. This is a

needed and powerful feature.

4.4.2.3 Erasing during inheritance

As a consequence of def-dependencies and late-binding, if a method is redefined, all the proofs of theo-

rems having def-dependencies on these methods are erased. This means that since the body of the method

changed, may be the proof is not correct anymore and must be done again. In practice, it can happen that

the proof still holds, but the compiler can’t ensure this, hence will turn the theorem into a property in the

species where the redefinition occurred. The developer will then have to provide a new proof of the inherited

theorem thanks to the proof of field. For example, any sorting list algorithm must satisfy the invariant

that its result is a sorted list with the same elements as its effective argument but the proof that indeed this

requirement is satisfied depends on the different possible implementations of sort. It is perhaps possible to

decompose this proof into different lemmas to minimize erasing by redefinition, some lemmas needing only

decl-dependencies over the redefined method.

4.4.2.4 Dependencies on collection parameters

Since collection parameters always have their representation abstracted, hidden, only decl-dependencies

can appear in the parametrised species using them. Hence they can never lead to erasing. These dependen-

cies are only used internally by the FoCaLiZe compiler in order to generate the target code. For this reason,

we will not focus anymore on them.

4.4.3 More about methods definition

We will now examine more technical points in methods definitions.

71

4.4.3.1 Well-formation

FoCaLiZe providing late-binding, it is possible to declare a method m0 and use it in another defined

method m1.

species S0 =

signature m0 : Self ;

let m1 = m0 ;

end ;;

In another species S1, it is also possible to declare a method m1 and use it in another defined method
m0.

species S1 =

inherit S0;

signature m1 : Self ;

let m0 = x ;

end ;;

As long as these two species have no interactions no problem can arise. Now, we consider a third species
S2 inheriting from both S0 and S1.

species S2 =

inherit S0, S1;

...

end ;;

The inheritance mechanism will take each method definition from its hosting species: from S0 for m1

and from S1 for m2. We have hence a configuration where m0 calls m1 and m1 calls m0, i.e. the two methods

are now mutually recursive although it was not the case where each of them was defined.

To avoid this situation, we will say that a species is well-formed if and only if, once inheritance is

resolved, no method initially not recursive turns to become recursive. The FoCaLiZe compiler performs

this analysis and rejects any species that is not compliant to this criterion. In the above example, an error

would be raised, explaining how the mutual recursion (the cycle of dependencies) appears, i.e. from m1 to

m0 (and implicitly back to m1 from m0).

Species ’S2’ is not well-formed. Field ’m1’ involves a non-declared recursion

for the following dependent fields: m1 -> m0.

4.4.3.2 Def-dependencies on the representation

As we previously said (cf. 4.4.2.2) def-dependencies on the representation are not allowed in properties
and theorems. The reason comes from the need to create consistent species interfaces. Let’s consider the
following species with the definitions:

species Counter =

representation = int ;

let inc (x in Self) = x + 1 ;

theorem inc_spec : all x in Self, inc (x) >= x + 1

proof = ... ;

end ;;

The statement of inc spec contains a def-dependency on the representation since to type-check this

statement, one need to know that the representation is int. To create the species’ interface, we must make

the representation abstract, hence hiding the fact that it is int. Without this information it it now impossible

to type-check inc spec body since it makes explicit reference to +, <=, 1 that are operations about int.

72

In practice, such an error is reported as a typechecking error telling that representation “is not

compatible with type” t where t is the type expression that was assigned to the representation (i.e. int in

our example).

73

Chapter 5

The FoCaLiZe Proof Language

5.1 Proofs of theorems

As presented in 3.2.8.3, FoCaLiZe proposes 3 ways to make proof of properties. We will only deal here

with proofs written in the FoCaLiZe Proof Language. As a reminder, the proofs written as direct Coq

or Dedukti scripts will be addressed in 9.0.2; the last kind of proof, by assumed doesn’t need anymore

description since it consists in bypassing the formal proof mechanism.

The syntax of proofs is as follows.

proof ::= {proof-step}∗ qed-step

| by {fact}+

| conclude

| coq proof enforced-dependencies external-code

| enforced-dependencies assumed external-code

enforced-dependencies ::= {enforced-dependency}∗

enforced-dependency ::=
| definition of {definition-name}+

| property {property-name}+

A proof is either a leaf proof or a compound proof. A leaf proof (introduced with the by or conclude

keywords) invokes Zenon with the assumptions being the given facts and the goal being the goal of the

proof itself (i.e. the statement that is proved by this leaf proof). See below for the kinds of facts that can be

given.

The conclude keyword is used to invoke Zenon without assumptions.

A compound proof is a sequence of steps that ends with a qed step. The goal of each step is stated in

the step itself, except for the qed step, which has the same goal as the enclosing proof.

proof-step ::= proof-step-bullet statement proof

74

A proof step starts with a proof bullet, which gives its level of nesting. The top level of a proof is 0. In

a compound proof, the steps are at level one plus the level of the proof itself.

For example, consider the following proof:

theorem implications : all a b : bool, a -> (b -> a)

proof =

<1>1 assume a : bool, b : bool,

hypothesis h1 : a,

prove b -> a

<2>1 hypothesis h2 : b,

prove a

by hypothesis h1

<2>2 qed

by step <2>1

<1>2 conclude

(* or: qed conclude

or: qed by step <1>1 *) ;;

Here, the steps <1>1 and <1>2 are at level 1 and form a compound proof of the top-level theorem.

Step <1>1 also has a compound proof (whose aim is b -> a), composed of steps <2>1 and <2>2. These

latter are at level 2 (one more than the level of their enclosing step).

After the proof bullet comes the statement of the step. This is the statement that is asserted and proved

by this step. At the end of this step’s proof, it becomes available as a fact for the next steps of this proof.

In our example, step <2>1 is available in the proof of <2>2, and <1>1 is available in the proof of <1>2.

Note that <2>1 is not available in the proof of <1>2: see section 5.1.2 for the scoping rules.

After the statement is the proof of the step. See below (under Statements) for a description of what is

the current goal for this proof.

qed-step ::= proof-step-bullet qed proof

| proof-step-bullet conclude

A qed step is similar to a normal step, except that its statement is the goal of the enclosing proof. It

may be reduced to the word conclude when its proof is reduced to conclude. In our example, we could

have replaced <1>2 with:

<1>2 conclude

In other words, a qed step serves ending the enclosing proof. In the former example, the <2>2 qed ends

the proof of <1>1 whose aim was b -> a.

Similarly, the <1>2 conclude (equivalent to <1>2 qed by step <1>1 or <1>2 qed conclude)

ends the complete proof, i.e. the one implicitly at level 0, i.e. the whole theorem itself.

statement ::= {assumption ,}∗ [prove logical-exp]

A statement must be non-empty: at least one assumption or the prove part must be present.

A statement appearing in a step has two readings: internal and external. The external reading is for the

rest of the proof: the current step proves that the assumptions imply the conclusion (i.e. the logical-exp

that appears after prove). The internal reading is for the proof of the step: the current goal is the prove

expression, and the assumptions are available as facts.

75

assumption ::= assume ident : type-exp

| hypothesis ident : logical-exp

| notation ident = exp

An assumption can either introduce a new (universally quantified) variable with its type (first form), or

a new named hypothesis (second form), or a named notation (third form).

A named notation can be unfold in the goal or in other facts.

fact ::= definition of {[[ident] #] ident}(,)+

| hypothesis {ident}(,)+

| (property | theorem) {[[[[ident] #] ident] !] ident}(,)+

| type {type-ident}(,)+

| step {proof-step-bullet}(,)+

A fact used in a leaf proof can be a definition, a hypothesis, a property, a theorem, a type name, or a

step.

Giving a definition as a fact allows Zenon to unfold this definition in the goal and in the other facts.

Giving a hypothesis/property/theorem as a fact allows Zenon to use this hypothesis/property/theorem

to prove the goal.

Giving a type name as a fact allows Zenon to use this type definition to prove the goal.

Giving a proof-step-bullet as a fact allows Zenon to use the (external reading of the) corresponding step

as an assumption to prove the goal. Note that even if several steps are labelled with this proof bullet, only

one of them is in scope at any point, so there is no ambiguity (see section 5.1.2).

5.1.1 Other simple proofs examples

Here are given some trivial theorems proven using the FoCaLiZe Proof Language to get familiar with the

syntax and the way to think when making proofs. It must be understood that the prover aims at helping by

combining intermediate proved properties. A proof is no more to be split up to a “trivial” level like it is the

case in Coq. For instance, in the following theorem, the fact that from ˜ b and (b \/ c) one can deduce

c is automatically handled by the prover.

theorem and_ors :

all a b c : bool, ((a \/ b) /\ (b \/ c)) -> (˜ b -> c)

proof =

<1>1 assume a : bool, b : bool, c : bool,

hypothesis h1 : (a \/ b) /\ (b \/ c),

prove ˜ b -> c

<2>1 hypothesis h2: ˜ b,

prove c

by hypothesis h1, h2 (* Indeed, (˜ b /\ (b \/ c)) -> c *)

<2>2 qed

by step <2>1

<1>2 conclude ;;

The following example illustrates how to split a proof at the lowest level, since in this case, we just need

Zenon to use hypotheses we introduced, only forcing it to deduce a and b from a /\ b.

theorem and_or :

all a b : bool, (a /\ b) -> (a \/ b)

proof =

76

(* Sketch, assume a /\ b, then prove a and prove b, each of them being

trivial consequence of a /\ b. *)

<1>1 assume a : bool, b : bool,

hypothesis h1: a /\ b,

prove a \/ b

<2>1 prove a

by hypothesis h1

<2>2 prove b

by hypothesis h1

<2>3 qed

by step <2>1, <2>2

<1>2 conclude

(* or: qed conclude

or even: qed by step <1>1 *) ;;

In fact, such a theorem is so simple that Zenon is able to automatically prove it:

theorem and_or :

all a b : bool, (a /\ b) -> (a \/ b)

proof = conclude ;;

also pass. However, some more complex proofs will need explicit intermediate steps that Zenon can’t

automatically guess. More advance cases can be found in the tutorials provided in the focal distribution.

5.1.2 Scoping rules

The scope of a step bullet extends from the end of the proof of that step to the end of the proof of the

enclosing step (i.e. the end of the proof of the qed step that has the same level as this step). This means that

proof bullets can be reused in other branches of the proof to name different steps.

The scope of an assumption is the proof of the step where this assumption appears.

5.1.3 Zenon options

The list of Zenon options and their meaning is given by typing: zenon -h.

77

Chapter 6

Recursive function definitions

When defining a recursive function FoCaLiZe, as Coq, expects a proof that this function terminates. A

termination proof is stated immediately after the body of its related recursive function definition:

let rec f (...) = ...

termination proof = ...

Termination proofs apply to recursive methods of species as well as to toplevel recursive functions with

the limitations presented in the next section. Recursive functions or methods can be used as Zenon hints in

proofs like any other ones (by definition of).

As usually, proving that a function terminates implies showing that each recursive call is made on an

argument which is “smaller” than the initial one. The notion of “smaller” can be stated by different means.

6.1 Limitations

Termination proofs are not supported for some forms of recursion. In such cases, it may be possible to omit

the proof of the related functions, letting the compiler generating an assumed proof. The following shapes

of recursion or recursive functions do not currently support termination proofs:

• Local recursive functions (nested in functions or more generally expressions).

• Nested recursive calls, i.e. of the form f (f (e)).

• Mutually recursive functions other than those structural on their first argument.

• Termination proofs using a measure can only refer to one parameter of the function among all the

ones it has.

• In this early state, polymorphic toplevel recursive functions may be incorrectly generated, leading to

a Coq error.

6.2 Kinds of termination proofs

FoCaLiZe proposes 3 ways to prove the termination of a function: by a structural decreasing of an argument,

using a well-founded relation or using a measure. Each possibility is detailed in the following sections.

From a technical point of view, the difference in the generated code only affects the Coq code. Recursive

structural functions are compiled to the construct Fixpoint of Coq. Functions that are not recursive

structural or that do not have termination proofs are compiled to the Function construct of Coq.

78

6.2.1 Structural termination

A structural recursive function is characterized by recursive calls performed on a subterm of the initial

decreasing argument. Hence this argument must be of an inductive type. The termination proof is stated by:

termination proof = structural on arg.

6.2.1.1 Example

This function is a simple computation of the length of a list. The recursive call is performed on the tail of

the list thanks to the pattern-matching. We have l = :: q, hence q is structurally smaller than l.

open "basics" ;;

let rec length (l : list (int)) =

match l with

| [] -> 0

| _ :: q -> 1 + (length (q))

termination proof = structural l ;;

6.2.1.2 Example

This function tests if a value x belongs to the list l. The decreasing is the same than in the previous example.

This example illustrates the possibility to have a function with several arguments and state the chosen one

as decreasing.

open "basics" ;;

let rec mem (x, l) =

match l with

| [] -> false

| h :: q -> if x = x then true else mem (x, q)

termination proof = structural l ;;

6.2.1.3 Wrong Example

open "basics" ;;

let rec zero (x) =

match x with

| 0 -> 0

| n -> zero (n - 1)

termination proof = structural x ;;

In this case (n − 1) is not a subterm of n. This latter has type int which is not an inductive type.

Currently, the compiler does not ensure that the type is inductive, leading to a Coq error. This is a known

limitation and weakness of the compiler which should be fixed in a future release.

6.2.1.4 Example

open "basics" ;;

type pint_t =

| Z

79

| S (pint_t)

;;

let rec zero (x) =

match x with

| Z -> 0

| S (n) -> zero (n)

termination proof = structural x ;;

This new function uses a representation of the integers being an inductive type (Peano’s integer indeed).

The structural decreasing is now ensured and this definition is correct.

6.2.2 Termination by a well-founded relation

Note: some explanations of this section come from [6].

The core of terminating recursion is that there are no infinite chains of nested recursive calls. This

intuition is commonly mapped to the mathematical idea of a well-founded relation.

We illustrate this section with a function div computing the quotient in the Euclidien division of two

integers. We made this function total by returning the (wrong) value 0 in order to only focus on termination.

open "basics" ;;

open "wellfoundation" ;;

let rec div (a, b) =

if a <= 0 || b <= 0 then 0

else (if (a < b) then 0 else 1 + div ((a - b), b))

termination proof = order pos_int_order on a ... ;

From the user’s point of view, despite div has two arguments, only the first one a is of interest for

termination. The well-founded relation used here, pos int order (of type int→ int→ bool) is the

usual ordering on positive integers provided by the standard library. The well-foundedness obligation of this

relation, is stated by is_well_founded (pos_int_order), which also provided by the FoCaLiZe

standard library (in the module wellfoundation.fcl).

The function div having only one recursive call, the only decreasing proof obligation will be:

∀a : int, ∀b : int,¬(a ≤ 0 ∨ b ≤ 0) → ¬(a < b) → pos int order(a− b, a)
where the conditions on the execution path leading to the recursion must be accumulated as hypotheses.

The termination proof consists in as many steps as there are recursive calls, each one proving the ordering

(according to the relation) of the decreasing argument and the initial one, then one step proving that the

termination relation is well-founded and an immutable concluding step (<1>e qed coq proof {*
wf_qed*}) telling to the compiler to assemble the previous steps, generate some stub code using a built-in

Coq script to close the proof. The complete termination proof for div is:

open "basics" ;;

open "wellfoundation" ;;

let rec div (a, b) = ...

termination proof = order pos_int_order on a

<1>1 prove all a : int, all b : int,

˜ (a <= 0 || b <= 0) ->

˜ (a < b) -> pos_int_order (a - b, a)

<2>1 assume a : int, b : int,

hypothesis H1: ˜ (a <= 0 || b <= 0),

hypothesis H2: ˜ (a < b),

prove pos_int_order (a - b, a)

80

<3>1 prove b <= a

by property int_not_lt_ge, int_ge_le_swap hypothesis H2

<3>2 prove 0 <= a

by property int_not_le_gt, int_ge_le_swap, int_gt_implies_ge

hypothesis H1

<3>3 prove 0 < b

by property int_not_le_gt, int_gt_lt_swap hypothesis H1

<3>4 prove (a - b) < a

by step <3>1, <3>2, <3>3 property int_diff_lt

<3>e qed by step <3>4, <3>2 definition of pos_int_order

<2>e conclude

<1>2 prove is_well_founded (pos_int_order)

by property pos_int_order_wf

<1>e qed coq proof {*wf_qed*} ;;

Proof obligations can be printed by the compiler to prevent the user from guessing them. For this, the

termination proof must be stated as order on ... with an assumed Zenon proof:

open "basics" ;;

open "wellfoundation" ;;

let rec div (a, b) = ...

termination proof = order pos_int_order on a

assumed ;;

Then invoke the focalizec compiler with the option -show-term-obls (or shorter -sto). During

the compilation, the obligations get printed on the standard output like:

Termination proof obligations for the recursive function ’div’:

<1>1 prove all a : basics#int, all b : basics#int,

(basics#|| (basics#<= (a, 0), basics#<= (b, 0)) = false) ->

((basics#< (a, b)) = false) -> wellfoundation#pos_int_order

((basics#- (a, b)), a)

<1>2 prove is_well_founded (wellfoundation#pos_int_order)

<1>e qed coq proof {*wf_qed*}

To summarize, a recursive function whose termination relies on a well-founded relation is given by the

four following points:

1. the relation (which can be an arbitrary expression, not only an identifier),

2. the theorem stating that this relation is well-founded,

3. a theorem for each recursive call, stating that the arguments of the recursive calls are smaller than the

initial arguments according to the given relation,
4. the recursive function with a termination proof of the shape (the order of the obligations does not

matter):

<1>x proofs of right ordering for each recursive call

(the same statements than corresponding theorems in point 3,

even if it is possible to directly inline the proofs instead)

<1>x+ 1 proof of the relation being well-founded

(same statement than in point 2, same remark than in steps <1>x)

<1>x+ 2 qed coq proof {*wf_qed*}

6.2.3 Termination by a measure

Note: some explanations of this section come from [6].

81

We consider here the particular case when the termination relies on a measure – a function that returns a

natural number – which must decrease at each recursive call. We want to ease such termination proofs even

if it would be possible for the user to use the previous approach, by constructing himself a well-founded

relation from the measure. Precisely, the compiler does this job for him.

A measure has to be positive, which will be a proof obligation. However, the relation built from the

measure being internalized, its well-foundedness is no more asked to the user. From the user’s point of view,

the proof obligation for each recursive call must now show that the measure decreases on the argument of

interest between each call.

We illustrate this section with a function mem checking if an element belongs to a list. Although a

structural argument could also be used, we chose to rely on the decreasing length of the list where the

element (whose “type” is a parameter of the hosting species) is recursively searched. We first write the

method length whose termination is simply structural on its argument l. Then we write the method mem,

stating a termination proof using the measure length on its argument l.

species Ex_mes (A is Basic_object) =

let rec length (l : list(A)) =

match l with

| [] -> 0

| h :: q -> 1 + length (q)

termination proof = structural l ;

let rec mem (l, x: A) =

match l with

| [] -> false

| h :: q -> h = x || mem (q, x)

termination proof =

measure length on l ... ;

end ;;

From the user’s point of view, despite mem has two arguments, only l is of interest for the termination.

The measure being length, the first proof obligation is:

∀l : list(A), 0 ≤ length(l)
Then, the method mem having only one recursive call, the only decreasing proof obligation is:

∀l : list(A), ∀q : list(A), ∀h : A, l = h :: q → length(q) < length(l)
where variables bound on the execution path leading to the recursion must be accumulated as hypotheses.

Here, the recursion being in a pattern-matching case, h and q must be related to the matched value l. The

core of the decreasing fact is the < relation between the argument of the recursive call and the one in the

current call.

For readability, instead of inlining the proofs of these obligations, the user can state two related proper-

ties or theorems before the function mem itself.

property length_pos : all l: list (A), 0 <= length (l) ;

theorem mes_decr : all l : list(A) , all q : list(A), all h : A,

l = h :: q -> length (q) < length (l)

proof = ... ;

Note that length pos is a property, not a theorem: it is not yet proved. Now the termination proof

consists in as many steps as there are recursive calls, each one proving the strict decreasing of the measure,

then one step proving that the measure is positive and an immutable concluding step (<1>$x+2$ qed

coq proof {*mf_qed*} telling to the compiler to assemble the previous steps and generate some stub

code to close the proof. Note that mf qed and wf qed are equivalent. Both keywords are provided for

82

users willing to make a difference between termination by a well-founded relation and a measure in their

source code.

let rec mem (l, x: A) = ...

termination proof = measure length on l

<1>1 prove all l : list(A) , all q : list(A), all h : A,

l = h :: q -> length (q) < length (l)

by property mes_decr

<1>2 prove all l: list (A), 0 <= length (l)

by property length_pos

<1>e qed coq proof {*mf_qed*} ;

To summarize, from the user’s point of view, a recursive function whose termination relies on a measure

is given by the four following points:

1. The measure function returning a regular integer (which raises the issue that < is well-founded on

naturals, not integers). The measure can be an arbitrary expression, not only an identifier (c.f. Section

6.2.3.1 for a more detailled discussion).

2. The theorem stating that the measure is always positive or null.

3. A theorem for each recursive call, stating that the measure on the argument of interest decreases.
4. The recursive function with a termination proof of the shape:

<1>x proofs of decreasing for each recursive call

(the same statements than corresponding theorems in point 3,

even if it is possible to directly inline the proofs instead)

<1>x+ 1 proof of the measure being always positive or null

(same statement than in point 2, same remark than in steps <1>x)

<1>x+ 2 qed coq proof {*mf_qed*}

6.2.3.1 Using Other Function Parameters or Arbitrary Expression

As previously stated, although the user usually states his relation or his measure by giving the name of the

corresponding function, any arbitrary expression can be used. In the case of a measure, this makes possible

to also use some other parameters of the function than the decreasing one.

In the (non-meaningful and dummy) following example, the function mem (whose termination could be

proved in a simpler way since it is structural) has twos parameters and the non-decreasing one, x, is also

used in the measure expression.

let dummy (x : int) = 0 ;;

let rec mem (l, x: int) =

match l with

| [] -> false

| h :: q -> h = x || (mem (q, x))

termination proof = measure (function ll -> dummy (x) + length (ll)) on l

...

This obviously impacts the proof obligations since x must be bound in their statements, leading to an

additional all x :int to bind x. The compiler takes care of this point while printing the obligations to

the user.

(* Obligation 1: strict decreasing at each recursive call. *)

<1>1 prove all l : list(int) , all x : int, all q : list(int), all h : int,

l = h :: q -> dummy (x) + length (q) < dummy (x) + length (l)

...

(* Obligation 2: measure always >= 0. *)

<1>2 prove all x : int, all l: list (int), 0 <= dummy (x) + length (l)

83

...

<42>e qed coq proof {*wf_qed*} ;;

6.2.3.2 Recursive Functions in Dedukti

The Dedukti backend is not able to check termination. The translation of recursive functions to Dedukti is

detailed in [7].

84

Chapter 7

Compiler options

When invoking the FoCaLiZe compiler with the focalizec command, various command line options can be

provided. The compiler can process several files in their order of apparition in the command line. Several

types of files are handled. By default, if no option is specified, the default behaviour is of the compiler is:

• “.ml” and “.mli” files are compiled with the OCaml compiler producing bytecode. It is possible to

customise the compiler code generation using the -ocaml-comp-mode option. The version of

OCaml used is automatically selected from the configuration options selected during FoCaLiZe’s

installation. The FoCaLiZe standard library path is implicitly passed to OCaml.

• “.v” files are compiled with the Coq compiler. The version of Coq used is automatically selected from

the configuration options selected during FoCaLiZe’s installation. The FoCaLiZe standard library

path is implicitly passed to Coq.

• “.sk” files are compiled with the Dedukti compiler using an alternative parser named Sukerujo. The

FoCaLiZe standard library path is implicitly passed to Dedukti.

• “.zv” files are compiled by Zenon via zvtov. The generated “.v” file is then compiled by Coq as

describe above.

• “.sk.zv” files are compiled by Zenon Modulo via zvtov. The generated “.sk” file is then compiled by

Dedukti as describe above.

• “.fcl” files are compiled by focalizec, generating the “.ml” OCaml source and the “.sk.zv” and “.zv”

pre-checker source. The “.ml” file is then sent to OCaml, the “.zv” file is sent to Zenon to finally get

a “.v” file that is sent to Coq and the “.sk.zv” file is sent to Zenon Modulo to finally get a “.sk” file

that is sent to Dedukti.

It is possible to control the kind of files generated by focalizec (no Coq, no Dedukti, no OCaml, “.zv”,

“.sk.zv”, “.v”, “.sk” using options described bellow.

* −coq-version version name. Enables Coq code and compilation compatibility for a specific version.

If the option is not set, by default the latest version of Coq supported by FoCaLiZe is assumed (at

least 8.5pl1). Since Coq version 8.5, the −I option is replaced by the −Q one to specify the loadpath.

* −dot-non-rec-dependencies directory name. Dumps non-let-rec dependencies of the species present

in the compiled source file. The output format is suitable to be graphically displayed by dotty (free

software available via the graphviz package). Each species will lead to a dotty file into the argument

directory. Files are names by “deps ” + the source file base name (i.e. without path and suffix) + the

species name + the suffix “.dot”.

85

* −focalize-doc Generates documentation. The result file gets located in the same directory than the

compiled file, replacing the suffix “.fcl” by “.fcd”. This file contains XML in plain ASCII text and

need to be processed before being read. Consult section 8 for more details.

* −−experimental Reserved for development purpose. Never use. Invoking the compiler with this

option may trigger unpredictable results.

* −i. Prints the interfaces of the species present in the compiled source file. Result is sent to the standard

output.

* −I directory name. Adds the specified directory to the path list where to search for compilation units.

Several −I options can be used. The search order is in the local directory, then in the standard library

directory (unless the −no-stdlib-path option is used, see below), then in the directories specified by

the −I options in their apparition order on the command line.

* −impose-termination-proof. Make termination proofs mandatory for recursive functions. If a recur-

sive function doesn’t have its termination proof, then the field will be considered as not fully defined

and no collection will be built on the species hosting the function. By default this option is not en-

abled and if a recursive function does not have any termination proof, a warning is printed during

compilation when trying to make a collection from this species.

* −methods-history-to-text directory name. Dumps the methods’ inheritance history of the species

present in the compilation unit. The result is sent as plain text files into the argument directory. For

each method of each species a file is generated wearing the name made of “history ” + the source file

base name (i.e. without path and suffix) + “ ” + the hosting species name + the suffix “.txt”.

* −no-ansi-escape. Disables ANSI escape sequences in the error messages. By default, when an error

is reported, bold, italic, underline fonts are used to make easier reading the message. Using this

option removes all these text attributes and may be used if your terminal doesn’t support ANSI escape

sequences or, for example, if compiling under emacs.

* −no-coq-code. Disables the Coq code generation. By default Coq code is always generated.

* −no-dedukti-code. Disables the Dedukti code generation. By default Dedukti code is generated if

Dedukti, Sukerujo, and Zenon Modulo are all found at FoCaLiZe configuration time.

* −−no-ocaml-code. Disables the OCaml code generation. By default OCaml code is always gener-

ated.

* −no-stdlib-path. Does not include the standard library installation directory in the libraries search

path. This option is rarely useful and mostly dedicated to the FoCaLiZe compiler build process.

* −ocaml-comp-mode file name. Specifies the OCaml compiler code generation mode. This option is

folowed by a string that can be ”byt” for bytecode compilation, ”bin” for native code compilation, or

”both” for bytecode and native code compilation. This option has no effect if −−no-ocaml-code is

used.

* −pretty file name. (Undocumented: mostly for debug purpose). Pretty-prints the parse tree of the

FoCaLiZe file as a FoCaLiZe source into the argument file.

* −pmatch-err-as-warn. Toggles pattern-matching issues (uncomplete matching and useless pattern)

as warnings instead of errors (default behaviour) that would abort compilation.

* −raw-ast-dump. (Undocumented: mostly for debug purpose). Prints on stderr the raw AST structure

after parsing stage.

* −scoped pretty file name. (Undocumented: mostly for debug purpose). Pretty-prints the parse tree

of the FoCaLiZe file once scoped as a FoCaLiZe source into the argument file.

* −stop-before-coq When Coq code generation is activated, stops the compilation process before pass-

86

ing the generated file to Coq. The generated pre-Coq source is sent to Zenon then the compilation

process stops. The produced file is hence ended by the suffix “.v”. This option has no effect if

−no-coq-code or −stop-before-zenon is used.

* −stop-before-dedukti When Dedukti code generation is activated, stops the compilation process

before passing the generated file to Dedukti. The generated pre-Dedukti source is sent to Zenon

Modulo then the compilation process stops. The produced file is hence ended by the suffix “.sk”.

This option has no effect if −no-dedukti-code or −stop-before-zenon is used.

* −stop-before-zenon. When Coq or Dedukti code generation is activated, stops the compilation

process before passing the generated file to Zenon or Zenon Modulo. The produced file is then a

pre-Coq source file or a pre-Dedukti source file, ended by the suffix “.zv” or “.sk.zv”. This option

has no effect if both −no-coq-code and −no-dedukti-code are used.

* −verbose. Sets the compiler in verbose mode. It will then generate the trace of the steps and op-

erations is does during the compilation. This feature is mostly used for debugging purpose but can

also explain the elaboration of the model during compilation for people interested in FoCaLiZe’s

compilation process.

* −v. Prints the FoCaLiZe version then exits.

* −version. Prints the full FoCaLiZe version, sub-version and release date, then exits.

* −where. Prints the binaries and libraries installation directories then exits.

* −zvtovopt ”options”. Set options to pass to zvtov. zvtov is anyway always called with options ”-

zenon (path to Zenon/Zenon Modulo) -new” in head. It is possible to use this option to pass options to

Zenon but be careful of correctly quoting options to make sure they are interpreted by their respective

recipient.

For instance, telling Zenon to change its maximum memory size can be done in the 3 equivalent

ways:

focalizec -zvtovopt ’-zopt ’\’’-max-size 2G’\’ foo.fcl

focalizec -zvtovopt "-zopt \"-max-size 2G\"" foo.fcl

focalizec -zvtovopt "-zopt ’-max-size 2G’" foo.fcl

* −help −−help. Prints the summary of command line options (i.e. this documentation) on the stan-

dard output.

87

Chapter 8

Documentation generation

When invoked with the −focalize-doc option, the command focalizec generates an extra file (with the

“.fcd” suffix) containing “documentation” information extracted from the compiled source file.

This information describes the different elements found in the source file (species, collections, methods,

toplevel definitions, type definitions) with various annotations like type, definition/inheritance locations. It

also contains the special comments previously called annotations (cf. 3.1.4) and that were kept during

the compilation process. Moreover, these annotations can contain special tags used by the documentation

generator of FoCaLiZe.

8.0.1 Special tags

FoCaLiZe’s documentation system currently supports 5 kinds of tags. They impact the content of the final

generated document, either in its content or in the way information is displayed depending on the output

format. These tags start with the “@” character and the content of the tag follows until the end of the line.

It is then possible in an annodation to mix regular text that will not be interpreted and tags.

8.0.1.1 @title

This tag must appear (i.e. is only taken into account) in the first annotations block of the source file. The

following text is considered to be the title of the source file and will appear in the header of the final

document.

See example provided for the @description tag below.

8.0.1.2 @author

This tag must appear (i.e. is only taken into account) in the first annotations block of the source file. The

following text is considered to be the author of the source file and will appear in the header of the final

document.

See example provided for the @description tag below.

8.0.1.3 @description

This tag must appear (i.e. is only taken into account) in the first annotations block of the source file.

The following text is considered to be the description of the content of the source file (what services it

88

implements) and will appear in the header of the final document. For example:

(***)

(* *)

(* FoCaLiZe Compiler *)

(* *)

(* Copyright 2007 LIP6 and INRIA *)

(* Distributed only by permission. *)

(***)

(**
@title FoC Project. Basic algebra.

@author The FoC project

@description Basic sets operations, orderings and lattices.

*)

...

will lead to a document header like (displayed in HTML format):

You may notice in the above source code example that the header information is located in an annotation

that is not the first one. In effect, the top-most banner starting by:

(***)

is in fact also an annotation since it starts by the sequence “(**”. However all these annotation belong to the

same annotations block as requiered.

8.0.1.4 @mathml

This tag must appear in the document comment preceding a method definition. It indicates the sequence of

MathML code to use to replace the name of the method everywhere in the current document. This tag only

affects the HTML display since it allows to show more usual symbols rather than identifiers in a browser.

This is expecially useful for mathematical formulaes where one prefer to see the sign = rather than an

identifier “equal”. For example:

(** In a setoid, we can test the equality (note for logicians: this is

a congruence). *)

species Setoid =

inherit Basic_object;

(** @mathml <eq/> *)

signature equal : Self -> Self -> bool ;

property equal_transitive : all x y z in Self,

equal (x, y) -> equal (y, z) -> equal (x, z) ;

...

will replace any occurrence of the method equal by the “<eq/>” MathML sequence that displays a =
sign when displayed by an HTML browser.

89

8.0.2 Transforming the generated documentation file

The generated documentation file is a plain ASCII text containing some XML compliant with FoCaLiZe’s

DTD (focalize/focalizec/src/docgen/focdoc.dtd). Like for any XML files processing is

performed thank to the command xsltproc with XSL stylesheets (“.xsl” files).

You may write custom XSL stylesheets to process this XML but the distribution already provides 2

stylesheets to format this information.

8.0.2.1 XML to HTML

Transformation from “.fcd” to a format that can be read by a WEB browser is performed in two passes.

These 2 steps can be invoked into one unique Unix-shell command (all on the same line without carriage

return) as provided by the script fcd2html.sh installed in the default binaries installation directory:

xsltproc ’’directory to the stylesheet’’/focdoc2html.xsl mysrc.fcd |

xsltproc ’’directory to the stylesheet’’/mmlctop2_0.xsl - > mysrc.xml

More in details, the above command-line performs the 2 following explicit steps:

1. Convert the “.fcl” file to HTML with MathML annotations. This is done applying the stylesheet

focalize/focalizec/src/docgen/focdoc2html.xsl with the command xsltproc.

For example:

xsltproc ’’directory to the stylesheet’’/focdoc2html.xsl mysrc.fcd > tmp

2. Convert the HTML+MathML temporary file into HTML. This is done applying the stylesheet

focalize/focalizec/src/docgen/focdoc2html.xsl with the command xsltproc.

For example:

xsltproc ’’directory to the stylesheet’’/mmlctop2_0.xsl tmp > mysrc.xml

90

Attention: You may note that the final result file name must be ended by the suffix “.xml” other-

wise your browser won’t be able to interpret it correctly and won’t display symbols (⇒,∈, ∃,→, . . .)

correctly.

Attention: By default, xsltproc validates the input files against DTDs. Depending on your system

configuration, some of these DTDs may be fetched from the net, resulting in a long processing time (in

fact, connexion latency). You may save time deactivating these checks using the option -novalid of

xsltproc. Files generated by focalizec are anyway assumed to be compliant to these DTDs.

8.0.3 XML to LaTeX

Currently not officially available.

91

Chapter 9

Hacking deeper

9.0.1 Interfacing FoCaLiZe with other languages

9.0.2 Dealing with hand-written Coq and Dedukti proofs

92

Chapter 10

Compiler error messages

Unable to find file ’name’ in the search path.

Description: The source file made reference to a FoCaLiZe compilation unit name (by the open or use

directives, or by explicit qualification with the “#” notation) but the related FoCaLiZe file was not found in

the current libraries search path.

Hints: Locate in which directory the missing file is and add this directory to the libraries search path

with the -I compiler option.

Invalid or corrupted compilation unit ’name’. May be it was compiled with

another version of the compiler.

Description: The source file made reference to a FoCaLiZe compilation unit name (by the open or use

directives, or by explicit qualification with the “#” notation but the related FoCaLiZe file was found with

an incorrect format.

Hints: May be the compilation unit was compiled with another version of FoCaLiZe or was mangled

and you must compile it again with your current version.

Invalid file extension for ’name’.

Description: The FoCaLiZe compiler expects compilation units to be ended by the suffix “.fcl”, “.ml”,

“.mli”, “.zv”or “.v”. If the submitted input file doesn’t end by one of these suffixes, this error message arises

with the name, name of the involved file.

Hints: Change the extension of the input file name or ensure the submitted input file name is the correct

one.

System error - sysmsg.

Description: During the compilation process an error related to the operating system occurred (I/O error,

permission error, file-system error, . . .). The original message sysmsg of the system explaining the problem

follows the FoCaLiZe’s message.

93

Hints: Consult the original message of the system and get an appropriate solution depending on this

message.

Invalid OCaml compiler kind ”string” for option -ocaml-comp-mode. Must

be ”byt”, ”bin” or ”both”.

Description: By default, if some OCaml code was generated, the FoCaLiZe compiler sends the generated

code to the OCaml compiler. The default compilation mode is bytecode production. It is possible to select

the native code production using the option -ocaml-comp-mode followed by the string “bin” or to select

both code production modes by the string “both”. The argument string “byt” is not required since it is the

default mode. Any other string is invalid and leads to the present error message.

Hints: Select “byt”, “bin” or “both” as argument to the -ocaml-comp-mode option.

No input file. focalizec is cowardly giving up...

Description: The FoCaLiZe compiler needs one input file to compile. If none is supplied, this error message

arises.

Hints: Add the input source file to compile on the command line.

Lexical error str

Description: In the currently submitted source file, a sequence of characters is not recognised as legal ac-

cording to the FoCaLiZe programming language legal words structure. The involved character str follows

in the error message.

Hints: Change the source code at the indicated location.

Syntax error

Description: In the currently submitted source file, a phrase of the program doesn’t follow FoCaLiZe’s

syntax.

Hints: Change the source code at the indicated location. It sometimes happens that the location gets

fuzzy due to the parsing process. If the error is not immediate to you, explore the neighbours of the specified

location. If you still can’t find out the error, have the following emergency process: comment your code and

incrementally uncomment it to find the point where the error appears without having to search in the whole

file. Once the error appears, have a look at the part of code you uncommented since the previous successful

compilation and try to guess the syntactic cause.

Unclear syntax error msg.

Description: An error occurred during the syntactic analysis but was not reported to be due to a syntax non-

compliance. This error is not clearly identified and this message is displayed as post-mortem report with the

exception msg that caused the error.

Hints: None

94

Compilation unit ’m’ was not declared as ”use”

Description: It not possible to use a qualified notation for a compilation unit name (i.e. using an entity

from this compilation unit by explicitly specifying the unit with the “#”-notation) before this compilation

unit is declared “use” or “open”. This error message indicates the location where an identifier refers to a

compilation unit that was not qualified either by the use or open directive. Note that the open directive

implicitly implies use.

Hints: Use the use directive on the compilation detected unit.

Parameterised species expected n1 arguments but was provided n2.

Description: A species expression (used in species parameter expression or inherit clause) applies a

species with n1 argument(s) although its definition declared it as using n2 argument(s).

Hints: None.

Non-logical let must not bind ’ident’ to a property.

Description: A let construct (not a logical let) attempts to bind the identifier ident to a logical

expression although it can only bind it to a computational expression.

Hints: Source program to fix. May be the let should be turned into a logical let if the body of

the binding is really a logical expression.

Delayed termination proof refers to an unknown method ’ident’ of the species.

Description: A proof of clause was found in a species for the property ident but this property was not

found in the species.

Hints: None.

Ambiguous logical expression. Add explicit parentheses to associate the side

argument of the /\ properly.

Description: A logical expression contains a /\ (logical “and”) with at least one argument being a ->

(logical “implication”) or a <-> (logical “equivalence”) without parentheses around the side argument

(“left” or “right”). Since this is not clear of how to associate, we ask the user to explicitly add parentheses.

Hints: Explicitly add the parentheses to make the association non-ambiguous.

Ambiguous logical expression. Add explicit parentheses to associate the side

argument of the \/ properly.

Description: A logical expression contains a \/ (logical “or”) with at least one argument being a -> (logical

“implication”) or a <-> (logical “equivalence”) without parentheses around the side argument (“left” or

“right”). Since this is not clear of how to associate, we ask the user to explicitly add parentheses.

Hints: Explicitly add the parentheses to make the association non-ambiguous.

95

Hypothesis, notation or variable name ’name’ already bound in the current

scope of the proof.

Description: In the current proof, an hypothesis, a notation or a variable is introduced but there already

exists one with this name.

Hints: Rename the mentionned hypothesis, notation or variable.

The property ’name’ doesn’t belong to a collection but to a species.

Description: A proof fact attempts to use a property hosted in a species instead of in a collection. Since

only collections are ensuring that properties they contain hold, only properties from collections can be used

to make proofs. In effect, in a species, a property may only be stated without being provable. Relying on an

unproved property may allow to write wrong proofs.

Hints: Either you have a collection implementing the species from whom you are trying to use the proof

and then use the property from this collection. Or have a collection parameter whose interface is the species

from whom you are trying to use the proof and then use the property from this collection parameter.

Termination proof considers ’name’ as decreasing but it is not an argument

of the function.

Description: A termination proof (either by measure or by order of a recursive function uses the

identifier ’name’ to pinpoint the decreasing parameter. However, this identifier is not a parameter of the

function.

Hints: You may got confused in the name of the parameter. Ony one of the function’s parameter can

appear at this place.

Types definition mixes regular and external kinds . . .

Description: A types definition contains both regular types and externally mapped ones. Mutually recursive

type definitions must only contains regular (sum) types.

A mutually recursive types definition must only contain sum types . . .

Description: Mutually recursive type definitions must only contains regular sum types to be compiled to

Coq which requires this constraints.

Hints: If you mix alias and unions, consider transforming the aliases into sums by adding a dummy

constructor. For instance, instead of:

type t = (int * u)

with u = | A | B (t) ;;

you may write:

type t = Dummy (int * u)

with u = | A | B (t) ;;

96

Note that if the Coq code generation is disabled (option -no-coq-code), the check is relaxed and the

error message will not appear. However, there will be no Coq material produced.

Types definition contains several external types.

Description: Externally mapped types cannot currently be mutually recursively defined.

Unbound sum type value constructor ’name’.

Description: An identifier representing a sum type value constructor was not found among the available sum

type definitions.

Hints: Source program to fix. Since in core expressions capitalized identifiers are considered as sum

type value constructors, may be you tried to use a capitalized name for one of your variables. In this case,

as any variables, make it starting with a lowercase letter. Otherwise, may be your type definition is missing

or not reachable in the current scope (missing explicit qualification with the “#” notation or open directive

if your type definition is hosted in another source file).

Unbound record type label ’name’.

Description: An identifier representing a record type label was not found among the available record type

definitions.

Hints: Source program to fix. May be your type definition is missing or not reachable in the current

scope (missing explicit qualification with the “#” notation or open directive if your type definition is hosted

in another source file).

Unbound identifier ’name’.

Description: An identifier (expected to be bound by a let, a pattern of a function parameter declaration)

was not found.

Hints: Source program to fix. May be your definition should be toplevel and is missing or not reachable

in the current scope (missing explicit qualification with the “#” notation or open directive if your definition

is hosted in another source file).

Unbound type ’name’.

Description: The definition of an identifier expected to be a type constructor was not found.

May be your type definition is missing or not reachable in the current scope (missing explicit qualifica-

tion with the “#” notation or open directive if your type definition is hosted in another source file).

Unbound compilation unit ’name’.

Description: A open or use directive or an explicit qualification by the “#” notation makes reference to a

compilation unit that was not found in the current libraries search path.

97

Hints: Locate in which directory the missing file is and add this directory to the libraries search path

with the -I compiler option.

Unbound species ’name’.

Description: The definition of the species name was not found in the current scope.

Hints: May be your species definition is missing or not reachable in the current scope (missing explicit

qualification with the “#” notation or open directive if your species definition is hosted in another source

file).

Species ’name’ is not a collection. Its carrier can’t be used in type expres-

sions.

Description: A type expression makes reference to the carrier of either a collection that doesn’t exist or a

species (which is not a collection).

Hints: The common confusion is to consider that a complete species is like a collection. However, only

carriers of collections are allowed in type expressions. Ensure you didn’t make reference to a species instead

of an effective collection.

Type name ’name’ already bound in the current scope.

Description: In a source file it is not allowed to redefine a type definition. This means that each type name

definition must be unique inside a file. However, it is possible to have several type definitions with the same

names as long as they are in different source files (even if they are used together via open directives of

explicit qualification by the “#” notation).

Hints: None.

Species name ’name’ already bound in the current scope.

Description: In a source file it is not allowed to redefine a species definition. This means that each species

name definition must be unique inside a file. However, it is possible to have several species definitions

with the same names as long as they are in different source files (even if they are used together via open

directives of explicit qualification by the “#” notation).

Hints: None.

Types t1 and t2 are not compatible.

Description: The typechecking system detected a type conflict between two expressions t1 and t2 that were

expected to be type-compatible.

Hints: Source program to fix. This is mostly due to an attempt to use the type of a representation

although it is turned abstracted by the collection or parametrisation mechanisms. In this case, ensure that

you are not trying to make assumptions on the type of a collection parameter or a collection.

98

Type t1 occurs in t2 and would lead to a cycle.

Description: The FoCaLiZe type system does not allow cyclic types. This especially means that a type

expression must not be a sub-part of itself to prevent cycles.

Hints: None.

Type constructor ’name’ used with conflicting arities: n1 and n2.

Description: A type expression applies a type constructor name to n1 argument(s) although its definition

declared it as using n2 argument(s) (or in the other order, depending on the way the error was detected: in

any way the definition and the usage of the type involve 2 different numbers of arguments).

Hints: None.

No expected argument(s).

Description: A type expression applies a type constructor to arguments although this constructor needs

none.

Hints: None.

In method ’name’, type scheme sch contains free variables.

Description: As presented in 4.1.2, species methods cannot be polymorphic. The method name has a type

scheme shown by sch which is polymorphic.

Hints: You may explicitly add type annotations (constraints) on the arguments or/and return type of your

method definition. If you need some kind of such polymorphism, use the collection parameter mechanism.

Sum type value constructor ’name’ expected n1 arguments but was used with

n2 arguments.

Description: The sum type constructor name is used with a bad number of arguments. It was declared to

use n1 arguments but is used with n2.

Hints: None.

Unbound type variable name.

Description: In a type expression, a type variable name is not bound.

Hints: Source program to fix. May be the type expression appears in a parametrised type definition

where you forgot to specify the type constructor’s parameter in head of the definition.

99

Method ’mname’ multiply defined in species ’sname’.

Description: Like for toplevel definitions, method definitions inside a species must not bind several times

the same name. In the species sname, the method mname is defined several times.

Hints: Source program to fix. May be you defined several times the same method and in this case,

remove one of the definitions. Or if the different occurrences of mname refer to different conceptual

functions, change the names to make them different.

Delayed proof of ’name’ was found several times in the species. Other occur-

rence is at: loc.

Description: A delayed proof of the property name was found several times in the same species (i.e. not

via inheritance but directly in the species body). Only one must be kept.

Hints: None.

In species ’sname’, proof of ’pname’ is not related to an existing property.

Description: In the species sname a delayed proof of the property pname was found but the statement of

this property doesn’t exist in the current species even via inheritance.

Hints: May be you forgot to write the property, or you mistook on the property name the proof is related

to or you forgot to inherit from a species having this property.

Representation is multiply defined.

Description: In a species, the method representation is multiply defined in the body of the species

although at most one definition must be provided.

Hints: Source program to fix. Remove the spurious definitions.

If the representation method is not directly present in the body, that is because the species inherits

from a parent where the representation is already defined. In this last case, since the parent’s structure is

already established, you must remove the representation method in the species where the error was

reported.

Representation is multiply defined by multiple inheritance and was formerly

found of type t1 and newly found of type t2.

Description: In the species, several parents brought by inheritance several incompatible definitions of the

representation. The error message reports t1 and t2, two incompatible types found for the representation

definition.

Hints: None.

100

’Self’ can’t be parametrised by itself.

Description: This error appears when Self appears as a species identifier used in a species expression that

is a parameter of the current defined species.

Hints: None.

A ”is” parameter can only be instantiated by an identifier of a collection.

Description: In a species expression, a parametrised species by an entity parameter (is-parameter) is pro-

vided an effective argument that is not a collection identifier.

Hints: None.

Illegal use of toplevel species ’S’ as effective argument.

Description: Effective parameter in species expressions (for inheritance or collection implementation) can

only be collections or collection parameters. In the present case, a toplevel species was used instead which

is inconsistent.

Hints: None.

Collection ’s1’ is not compatible with ’s2’. In method ’name’, types t1 and t2
are not compatible.

Description: During collection parameter instantiation, the interface of the provided collection s1 is not

compatible with the interface s2, because it doesn’t have a signature containing at least s2’s methods with

compatibles types. The wrong field name is reported with the two types t1 and t2 expected and actually

found.

Hints: None.

Collection ’s1’ is not compatible with ’s2’. In method ’fname’, type t1 occurs

in t2 and would lead to a cycle.

Description: During collection parameter instantiation, the interface of the provided collection s1 is not

compatible with the interface s2, since type compatibility check detected a cyclic type. This means that the

type t1 is a sub-part of itself via the type t2.

Hints: None.

Collection ’s1’ is not compatible with ’s2’. In method ’fname’, the type con-

structor ’tname’ is used with the different arities n1 and n2.

Description: During collection parameter instantiation, the interface of the provided collection s1 is not

compatible with the interface s2, since the type constructor (not sum type constructor) tname is used with

an improper number of arguments n1 versus n2.

101

Hints: None.

Collection ’s1’ is not compatible with ’s2’. Method ’name’ is not present in

’s1’.

Description: During collection parameter instantiation, the interface of the provided collection s1 is not

compatible with the interface s2, because it doesn’t have a signature containing at least s2’s methods and

especially not the method name.

Hints: None.

Parameterised species is applied to n arguments.

Description: A parameterised species is applied to a wrong number n of effective arguments.

Hints: None.

Species ’sname’ cannot be turned into a collection. Following field(s) is(are)

not defined: ...

Description: A collection is built out of a completely defined species (cf. 4.1.5), i.e. a species where all the

methods are defined and not only declared. In the species sname, the listed methods are only declared (or

missing a termination proof in case of recursive functions and usage of the -impose-termination-proof).

Hence the species is not complete and no collection can be extracted from it.

Note that missing termination is by default only a warning and is turned into an error by using the

-impose-termination-proof option on the command line. In effect, the notion of to “be defined”

applies to recursive functions which must have a termination proof provided in addition to their computa-

tional body.

Hints: Add an effective definition of the method, either by writing it code or by inheritance, according

to your program model.

Add an effective termination proof to the function or do not invoke the -impose-termination-proof

option when compiling the source file.

Warning: In species ’sname1’, proof of ’pname’ could be done earlier in

’sname2’.

Description: This message is only a warning. It states that the property pname whose proof was done

in the species sname1 could be proved earlier in the inheritance (mor eaccurately, in the species sname2
from which sname1 inherits) because all the material used in the proof was already available in the species

sname2. This espacially means that all the methods the proof def-depends on were alrady defined, and all

the methods the proof decl-depends on were already declared.

Hints: Move the proof of the property directly in the species sname2. If the property is also hosted in

sname2, then it can directly be turned into a theorem, merging the 2 fields property and proof of.

102

In the delayed termination proof, parameter ’name’ does not refer to a pa-

rameter of the original function.

Description: As any proof, termination proofs can be made later after the function definition. However it

must refer to the original function’s parameters names. In the current proof, the identifier name doesn’t

exist among the original function’s parameters.

Hints: Change the parameter name in the proof to make it matching the function definition’s ones.

Method ’mname’ was found with incompatible types during inheritance. In

species ’s1’: τ1, in species ’s2’: τ2.

Description: During inheritance, a method nmane was found with 2 incompatible types. Remind that all

along the inheritance tree, methods must not change their type. The two found types and the species hosting

the definitions having these types are provided by ’s1’and τ1 (resp. ’s2’and τ2).

Hints: None.

Logical method ’mname’ appearing in species ’s1’ should have the same

statement than in species ’s2’ at source− location.

Description: During inheritance, a theorem or a property nmane was redefined but with a different state-

ment. As described at the beginning of 4.3.1, the inheritance mechanism also allows to redefine methods

already existing as long as they keep the same type expression. For theorems to have the same type is sim-

ply to have the same statement. A same property can be written in several semantically equivalent ways.

For instance, transitivity of an operation ⊙ can be written by: ∀x, y, z ∈ S, x ⊙ y ⇒ y ⊙ z ⇒ x ⊙ z or

∀x, y, z ∈ S, (x ⊙ y ∧ y ⊙ z) ⇒ x ⊙ z. FoCaLiZe does not try to establish the equality of these two

expressions. It only compares syntactically the statements modulo variables renaming (i.e. α-conversion)

and non-significant parentheses.

Hints: The simplest way is to rewrite the logical statement of the inheriting species as it was written in

the inherited species.

Definition ’name’ is considered as both logical and non-logical.

Description: In the inheritance tree of the current species, a method name was previously found a “logical”

and is now found no more “logical”.

Hints: Ensure that you did not define 2 methods with the same name but for different purposes (one to

help in stating logical expressions and the other for your computational behaviour).

Definition ’name’ is redefined although marked final.

Description: In the inheritance tree of the current species, a method name was previously defined with the

keyword final forbidding any later redefinition while the current species try to redefine it.

103

Hints: If the previous definition was flagged as to be never changed, there may have good reasons. Try to

understand while the software architecture imposed this constraint (before – may be dangerously– thinking

at removing the final qualifier!).

Species ’sname’ is not well-formed. Method ’name’ involves a non-declared

recursion for the following dependent methods: . . .

Description: The species sname doesn’t respect the well-formation rule presented in 4.4.3.1. The chain of

functions involved in the cycle is given in the error message as a sequence of methods names m1 → m2 →
. . . → mn with the implicit final path mn → m1.

Hints: None.

No lang mapping given for the external value definition ’name’.

Description: The external value definition allowing to link FoCaLiZe code to foreign languages doesn’t

specify how to map the value identifier name in the language lang.

Hints: Supply a binding for this language in the external definition.

No lang mapping given for the external type definition ’name’.

Description: The external type definition allowing to link FoCaLiZe code to foreign languages doesn’t

specify how to map the type identifier name in the language lang.

Hints: Supply a binding for this language in the external definition.

No lang mapping given for the external sum type value constructor ’name’.

Description: The external sum type definition allowing to link FoCaLiZe code to foreign languages doesn’t

specify how to map the sum type constructor name in the language lang.

Hints: Supply a binding for this language in the external definition.

No lang mapping given for the external record field ’name’.

Description: The external record type definition allowing to link FoCaLiZe code to foreign languages

doesn’t specify how to map the record field name in the language lang.

Hints: Supply a binding for this language in the external definition.

Unable to find OCaml generation information for compiled file ’file’. Compi-

lation unit may have been compiled without OCaml code generation enabled.

Description: The FoCaLiZe compilation unit file file.fcl was compiled but the object file doesn’t contain

information about OCaml code generation. The FoCaLiZe compiler allows to disable the OCaml code

production by the --no-ocaml-code option. May be this option was used.

104

Hints: Invoke the compiler on the source file file.fcl without the --no-ocaml-code option.

Record type definition contains a mutable field ’name’ that can’t be compiled

to Coq.

Description: Never raised in the current version since mutable record fields are not yet available.

Unable to find Coq generation information for compiled file ’file’. Compila-

tion unit may have been compiled without Coq code generation enabled.

Description: The FoCaLiZe compilation unit file.fcl was compiled but the object file doesn’t contain

information about Coq code generation. The FoCaLiZe compiler allows to disable the Coq code production

by the --no-coq-code option. May be this option was used.

Hints: Invoke the compiler on the source file file.fcl without the --no-coq-code option.

Unable to find Dedukti generation information for compiled file ’file’. Com-

pilation unit may have been compiled without Dedukti code generation en-

abled.

Description: The FoCaLiZe compilation unit file.fcl was--no-dedukti-code compiled but the object

file doesn’t contain information about Dedukti code generation. The FoCaLiZe compiler allows to disable

the Dedukti code production by the --no-dedukti-code option. May be this option was used.

Hints: Invoke the compiler on the source file file.fcl without the -no-dedukti-code option and

with the -dedukti-code option.

Using a collection parameter’s method (name) in a Zenon proof with ”by

definition” is not allowed.

Description: The current proof tries to used the definition of a method name of a species parameter. Since

species parameters are always abstracted, definitions (i.e. “bodies”) of their methods are not available in

the parametrised species. For this reason, it is impossible to provide this definition to Zenon.

Hints: None.

Using an only declared method of Self (name) in a Zenon proof with ”by

definition” is not allowed.

Description: The current proof tries to used the definition of a method name only declared in the current

species. Since the definition is not available, it is impossible to provide it to Zenon.

Hints: None.

105

Using a local identifier (name) in a Zenon proof with ”by definition” is not

allowed.

Description: The current proof tries to used a local variable name, i.e. an identifier not representing a

method, hence meaningless for Zenon.

Hints: None.

Using a local identifier (name) in a Zenon proof with ”by property” is not

allowed.

Description: The current proof tries to used a local variable name, i.e. an identifier not representing a

method, hence meaningless for Zenon.

Hints: None.

Assumed hypothesis ’hyp’ in a Zenon proof was not found.

Description: The current proof makes a reference to an hypothesis hyp that was not found in the current

proof tree.

Hints: None.

Step ’<. . .>. . . ’ in a Zenon proof was not found.

Description: The current proof makes a reference to an proof step that was not found in the current proof

tree.

Hints: None.

Termination proof is stated as structural on the parameter ’name’ which does

not syntactically decrease.

Description: A termination proof was given for a recursive function by a structural criterion. However, the

syntactical analysis of the argument used for the recursive call does not show that the given argument stricly

decreases.

Hints: May be you stated a wrogn parameter name, or your recursive call(s) really do not strictly de-

crease(s).

Mutual recursion is not yet supported for Coq code generation. At least func-

tions ’name1’ and ’name2’ are involved in a mutual recursion.

Description: The current version of FoCaLiZe does not yet handle Coq code generation for non-structural

mutual recursive functions. At least the two such functions name1 and name2 were found as mutually

recursive but may be the recursion involves more functions. It is then impossible to produce Coq source

code.

106

Hints: Until this feature is available in FoCaLiZe, do not try to generate the Coq code for the source

file containing these functions by using the --no-coq-code option.

Recursive call to ’name’ contains nested recursion.

Description: The function contains a recursive call to name inside a recursive call. The current version of

FoCaLiZe doesn’t support the Coq code generation for nested recursive calls.
Hints: Try to rewrite your function with the nested call performed before the outer recursive call. For

instance:

let rec f (x) =

...

f (f (bla))

...

should be turned into:

let rec f (x) =

...

let tmp = f (bla) in

f (tmp)

...

Recursive call to ’name’ is incomplete.

Description: The function contains a recursive occurrence of name with an incomplete number of param-
eters. Since application syntactically requires all the arguments to be present, this can arise if the recursive
identifier is used in non-applicative position. However the error message is more general since future ex-
tensions may involve partial applications. Below follows an example of such invalid usage of a recursive
function identifier:

let rec f (x) =

...

let tmp = f in

let ... = tmp (...) ... in

f (...)

...

Hints: None

Pattern-matching is not exhaustive.

Description: The pointed pattern-matching expression doesn’t handle all the shapes of possible incoming

values according to the type of the matched expression. If such a non-handled value arises at runtime,

execution will be aborted. Moreover, Coq will reject generated code.

Hints: Complete the pattern-matching by adding cases covering all the possible shapes of values. Inspect

the type definition related to the matched expression to find the missing constructors. The ultimate bullet-

proof solution is to add a “catch-all” pattern, although it is not always the suitable solution: study if all the

remaining cases require the same process.

107

Useless case in pattern-matching.

Description: The pointed pattern-matching expression contains a case already caught by a previous one.

Hence, this useless case will never be followed.

Hints: Remove the spurious case. But before, make sure you didn’t write above a pattern using a variable

instead of a value constructor. Another common error is to use in a pattern, a variable wearing the same

name than a previously bound one, thinking that pattern-matching will test equality of the matched value

with the value of this previously bound variable. For instance:

let var = 3 in

match (var + 0) with

| var -> false

| _ -> true

will not check that the matched value (4) is equal to the value of var. In the pattern, var is a new identifier

that will be bound to the value of the matched expression, here to 3. Hence, in this case the first branch is

always taken, leaving the second one useless.

Unexpected error: ”msg”. Please report.

Description: An error was raised and not expected during a normal execution of the compiler. This is a

failure of the compiler and must be fixed by the FoCaLiZe development team. The error message display

the internal reason of the failure and must be reported to the FoCaLiZe development team.

Hints: http://focal.inria.fr/, link “Bug tracking”.

108

Bibliography

[1] P. Ayrault, T. Hardin, and F. Pessaux. Development life cycle of critical software under FoCal. In

ENTCS-Elsevier, editor, Harnessing Theories for Tool Support in Software-TTSS’08, 2008.

[2] R. Bonichon, D. Delahaye, and D. Doligez. Zenon: An Extensible Automated Theorem Prover Pro-

ducing Checkable Proofs. In Logic for Programming Artificial Intelligence and Reasoning (LPAR),

volume 4790 of LNCS/LNAI, pages 151–165, Yerevan (Armenia), Oct. 2007. Springer.

[3] S. Boulmé. Spécification d’un environnement dédié à la programmation certifiée de bibliothèques de

Calcul Formel. Thèse de doctorat, Université Paris 6, 2000.

[4] S. Boulmé, T. Hardin, V. Ménissier-Morain, and R. Rioboo. On the way to certify computer algebra

systems. In Calculemus 99, volume 23. Elsevier, 1999.

[5] S. Boulmé, T. Hardin, and R. Rioboo. Some hints for polynomials in the Foc project. In Calculemus

2001 Proceedings, June 2001.

[6] F. P. C Dubois. Termination Proofs for Recursive Functions in FoCaLiZe. In Trends in Functional

Programming (to be published), pages –, 2015.

[7] R. Cauderlier and C. Dubois. ML Pattern-Matching, Recursion, and Rewriting: From FoCaLiZe to

Dedukti. In A. Sampaio and F. Wang, editors, Theoretical Aspects of Computing - ICTAC 2016 - 13th

International Colloquium, Taipei, Taiwan, ROC, October 24-31, 2016, Proceedings, volume 9965 of

Lecture Notes in Computer Science, pages 459–468. Springer Berlin Heidelberg, 2016.

[8] R. Cauderlier and P. Halmagrand. Checking Zenon Modulo Proofs in Dedukti. In Kaliszyk, Cezary

and Paskevich, Andrei, editor, Proceedings Fourth Workshop on Proof eXchange for Theorem Proving,

PxTP 2015, Berlin, Germany, August 2-3, 2015., volume 186 of Electronic Proceedings in Theoretical

Computer Science, pages 57–73, Berlin, Germany, 2015. Open Publishing Association.

[9] D. Delahaye, D. Doligez, F. Gilbert, P. Halmagrand, and O. Hermant. Zenon Modulo: When Achilles

Outruns the Tortoise using Deduction Modulo. In K. McMillan, A. Middeldorp, and A. Voronkov,

editors, Logic for Programming Artificial Intelligence and Reasoning (LPAR), volume 8312 of LNC-

S/ARCoSS, pages 274–290. Springer Berlin Heidelberg, dec 2013.

[10] D. Delahaye, J.-F. Étienne, and V. Viguié Donzeau-Gouge. A Formal and Sound Transformation from

FoCaLiZe to UML: An Application to Airport Security Regulations. In UML and Formal Methods

(UML&FM), Innovations in Systems and Software Engineering (ISSE) NASA Journal, Kitakyushu-

City (Japan), Oct. 2008. Springer.

109

[11] D. Delahaye, J.-F. Étienne, and V. Viguié Donzeau-Gouge. Formal Modeling of Airport Security

Regulations using the FoCaLiZe Environment. In Requirements Engineering and Law (RELAW),

Barcelona (Spain), Sept. 2008. IEEE CS Press.

[12] D. Delahaye, J.-F. Étienne, and V. Viguié Donzeau-Gouge. Certifying Airport Security Regulations

using the FoCaLiZe Environment. In Formal Methods (FM), volume 4085 of LNCS, pages 48–63.

Springer, Aug. 2006.

[13] D. Delahaye, J.-F. Étienne, and V. Viguié Donzeau-Gouge. Reasoning about Airport Security Regu-

lations using the FoCaLiZe Environment. In International Symposium on Leveraging Applications of

Formal Methods, Verification and Validation (ISoLA), pages 45–52. IEEE CS Press, Nov. 2006.

[14] D. Doligez. Zenon, version 0.4.1. http://focal.inria.fr/zenon/, 2006.

[15] G. Dowek, T. Hardin, and C. Kirchner. Theorem Proving Modulo. Journal of Automated Reasoning

(JAR), 31, 2003.

[16] T. Hardin and R. Rioboo. Les objets des mathématiques. RSTI - L’objet, 2004.

[17] É. Jaeger and T. Hardin. A few remarks about formal development of secure systems. In HASE, pages

165–174. IEEE Computer Society, 2008.

[18] M. Jaume and C. Morisset. A formal approach to implement access control. Journal of Information

Assurance and Security, 2:137–148, 2006.

[19] M. Jaume and C. Morisset. Towards a formal specification of access control. In Joint Workshop

on Foundations of Computer Security and Automated Reasoning for Security Protocol Analysis FCS-

ARSPA’06 (Satellite Workshop to LICS’2006), 2006.

[20] M. Maarek and V. Prevosto. Focdoc: The documentation system of foc. In Proceedings of the 11th

Calculemus Symposium, Rome, sep 2003.

[21] M.Carlier and C.Dubois. Functional testing in the focal environment. In B.Beckert and R.Hähnle,

editors, Tests and Proofs, Second International Conference, TAP 2008, Prato, Italy, April 9-11, 2008.

Proceedings, volume 4966 of Lecture Notes in Computer Science, pages 84–98. Springer, 2008.

[22] C. Morisset. Sémantique des systèmes de contrôle d’accès. PhD thesis, Université Pierre et Marie

Curie - Paris 6, 2007.

[23] V. Prevosto. Conception et Implantation du langage FoC pour le développement de logiciels certifiés.

PhD thesis, Université Paris 6, sep 2003.

[24] V. Prevosto and S. Boulmé. Proof contexts with late binding. In Typed Lambda Calculi and Applica-

tions, volume 3461 of LNCS, pages 324–338. Springer, 2005.

[25] V. Prevosto and D. Doligez. Algorithms and proof inheritance in the Foc language. Journal of Auto-

mated Reasoning, 29(3-4):337–363, dec 2002.

[26] V. Prevosto, D. Doligez, and T. Hardin. Algebraic structure and dependent records. In TPHOLs’2002,

volume 2410 of LNCS. Springer-Verlag, 2002.

110

[27] V. Prevosto and M. Jaume. Making proofs in a hierarchy of mathematical structures. In Proceedings

of the 11th Calculemus Symposium, Rome, sep 2003.

111

Index

;;, 57, 58

FoCaLiZe-to-coq-mapping, 89

alphanumeric identifier, 26

annotation, 24

block, 24

bang character, 62

blank, 23

category of identifiers, 26

collection, 60

parameter, 61

comment, 23

compilation unit, 20

compiler

options, 82

compiler option, 82

compiler-error-messages, 90

defining a prefix operator, 28

defining an infix operator, 28

defining operators, 28

dependency, 67

decl, 67

def, 68

on representation, 68, 69

directive

coq require, 53

open, 33, 43, 52

use, 52

documentation, 24

generation, 85

erasing, 68

escaped character, 23

expression, 40

application, 49

constant, 42

identifier, 42

if, 47

let-in, 44

literal, 42

logical, 53

match, 47

operator, 50

record, 50

clone, 50

field, 51

sum type constructor, 42

type, 35

field, 58

fixity of identifiers, 25

foreign-language-interface, 89

function, 58

recursive, 75

functional value, 42, 49

identifier, 24, 42

delimited, 29

extended, 29

operator, 27

identifier binding, 44

if, 47

infix identifier, 25

infix in prefix position, 28

inheritance, 64

multiple, 65

parametrised by Self, 66

parametrised species, 65

installation, 19

interface, 60

compatibility, 61

112

late-binding, 66

let-in, 44

lexical conventions, 23

linking files, 22

match, 47

method, 58

qualification, 43, 62

name

qualification, 32, 43

resolution, 32, 43, 63

nature of identifiers, 26

operator, 27

parameter

collection, 61

entity, 63

parametrisation, 59, 61

pattern matching, 47

polymorphism, 59, 61

precedence of identifiers, 26

prefix form notation, 28

prefix identifier, 25

proof, 20

delayed, 59

language, 71

step bullet, 32

property, 53, 59

qualified name, 32

recursion, 75

regular identifier, 26

representation, 58

declared, 58

defined, 58

scoping, 43, 63

signature, 58

species, 58

complete, 59

expression, 66

name, 29

sum type, 36

theorem, 53, 59

toplevel, 57

tuple, 35

as sum type value constructor arg, 36

type

compatible, 39

definition, 35

alias, 35

record, 38

sum, 36

dependent, 62, 65

expression, 35

recursive, 37

value constructor, 36

well-formation, 69

113

